Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Michael P. Glotzbecker x
  • By Author: Proctor, Mark R. x
Clear All Modify Search
Restricted access

Lara L. Cohen, Brian W. Yang, Nora P. O’Neill, Mark R. Proctor, Michael P. Glotzbecker and Daniel J. Hedequist

OBJECTIVE

Patients with trisomy 21 (Down syndrome; DS) often have atlantoaxial instability (AAI), which, if severe, causes myelopathy and neurological deterioration. Children with DS and AAI who undergo cervical spine fusion have a high rate of nonunion requiring revision surgery. Recombinant human bone morphogenetic protein–2 (rhBMP-2) is a TGF-β growth factor that is used to induce bone formation in spine fusion. Although previous studies in the adult population have reported no reduction in pseudarthrosis rates with the use of rhBMP-2, there is a lack of literature in the pediatric DS population. This study describes the use of rhBMP-2 in children with DS and AAI during revision to treat nonunion.

METHODS

A retrospective review of a cervical spine fusion database (n = 175) was conducted. This database included all cervical spine fusions using modern instrumentation at the authors’ institution from 2002 to 2019. Patients with DS who underwent a revision utilizing rhBMP-2 were included in the study. The number of prior fusions, use of rhBMP-2 in fusions, length of stay, halo use, and surgical data were collected. Postoperative complications and length of follow-up were also recorded.

RESULTS

Eight patients (75% female) met the inclusion criteria. The average age at revision with rhBMP-2 was 11 years (range 3–19 years). All patients were diagnosed with nonunion after an initial cervical fusion. All revisions were posterior fusions of C1–2 (n = 2) or occiput to cervical (n = 6). All revisions included implant revisions, iliac crest bone grafting, and rhBMP-2 use. One patient required irrigation and debridement of an rhBMP-induced seroma. Another patient required return to the operating room to repair a dural tear. There were no neurological, infectious, airway, or implant-related complications. Revision utilizing rhBMP-2 achieved fusion in 100% (n = 8) of patients. The average length of follow-up was 42.6 months. All patients demonstrated solid fusion mass on the last radiograph.

CONCLUSIONS

This is the first case series reporting the successful use of rhBMP-2 to facilitate cervical spine fusion in patients with DS after previous nonunion. In addition, few rhBMP-2–related postoperative complications occurred.

Restricted access

Bram P. Verhofste, Michael P. Glotzbecker, Michael T. Hresko, Patricia E. Miller, Craig M. Birch, Michael J. Troy, Lawrence I. Karlin, John B. Emans, Mark R. Proctor and Daniel J. Hedequist

OBJECTIVE

Pediatric cervical deformity is a complex disorder often associated with neurological deterioration requiring cervical spine fusion. However, limited literature exists on new perioperative neurological deficits in children. This study describes new perioperative neurological deficits in pediatric cervical spine instrumentation and fusion.

METHODS

A single-center review of pediatric cervical spine instrumentation and fusion during 2002–2018 was performed. Demographics, surgical characteristics, and neurological complications were recorded. Perioperative neurological deficits were defined as the deterioration of preexisting neurological function or the appearance of new neurological symptoms.

RESULTS

A total of 184 cases (160 patients, 57% male) with an average age of 12.6 ± 5.30 years (range 0.2–24.9 years) were included. Deformity (n = 39) and instability (n = 36) were the most frequent indications. Syndromes were present in 39% (n = 71), with Down syndrome (n = 20) and neurofibromatosis (n = 12) the most prevalent. Eighty-seven (48%) children presented with preoperative neurological deficits (16 sensory, 16 motor, and 55 combined deficits).

A total of 178 (96.7%) cases improved or remained neurologically stable. New neurological deficits occurred in 6 (3.3%) cases: 3 hemiparesis, 1 hemiplegia, 1 quadriplegia, and 1 quadriparesis. Preoperative neurological compromise was seen in 4 (67%) of these new deficits (3 myelopathy, 1 sensory deficit) and 5 had complex syndromes. Three new deficits were anticipated with intraoperative neuromonitoring changes (p = 0.025).

Three (50.0%) patients with new neurological deficits recovered within 6 months and the child with quadriparesis was regaining neurological function at the latest follow-up. Hemiplegia persisted in 1 patient, and 1 child died due a complication related to the tracheostomy. No association was found between neurological deficits and indication (p = 0.96), etiology (p = 0.46), preoperative neurological symptoms (p = 0.65), age (p = 0.56), use of halo vest (p = 0.41), estimated blood loss (p = 0.09), levels fused (p = 0.09), approach (p = 0.07), or fusion location (p = 0.07).

CONCLUSIONS

An improvement of the preexisting neurological deficit or stabilization of neurological function was seen in 96.7% of children after cervical spine fusion. New or progressive neurological deficits occurred in 3.3% of the patients and occurred more frequently in children with preoperative neurological symptoms. Patients with syndromic diagnoses are at higher risk to develop a deficit, probably due to the severity of deformity and the degree of cervical instability. Long-term outcomes of new neurological deficits are favorable, and 50% of patients experienced complete neurological recovery within 6 months.