Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Andrew D. Parent x
  • By Author: Patlolla, Anita x
Clear All Modify Search
Restricted access

Alexander Y. Zubkov, Kotaro Ogihara, Phani Tumu, Anita Patlolla, Adam I. Lewis, Andrew D. Parent and John Zhang

Object. Mitogen-activated protein kinase (MAPK) is an important signaling factor in vascular proliferation and contraction, which are the two features of cerebral vasospasm that follow subarachnoid hemorrhage. The authors studied the possible involvement of MAPK in hemolysate-induced signal transduction and contraction in rabbit basilar artery (BA).

Methods. Isometric tension was used to record the contractile response of rabbit BA to hemolysate, and Western blots were obtained using antibodies for MAPK.

The following results are reported. 1) Hemolysate produced a concentration-dependent contraction of rabbit BA; however, preincubation of arteries with the MAPK kinase (MEK) inhibitor PD-98059 markedly reduced this contraction. The administration of PD-98059 also relaxed, in a concentration-dependent fashion, the sustained contraction induced by 10% hemolysate. 2) The Janus tyrosine kinase 2 inhibitor AG-490, preincubated with arterial rings, reduced the contractile response to hemolysate but failed to relax the sustained contraction induced by this agent. The Src-tyrosine kinase inhibitor damnacanthal and the phosphatidylinositol 3—kinase inhibitor wortmannin failed to reduce hemolysate-induced contraction. 3) Hemolysate produced a time-dependent elevation of MAPK immunoreactivity as seen on Western blots of rabbit BA. The MAPK was enhanced 1 minute after hemolysate exposure and the effect reached maximum levels at 5 minutes. The immunoreactivity of MAPK decayed slowly over time, but the level of this kinase was still higher than the basal level, even at 2 hours after exposure to hemolysate. Preincubation of arteries with the MEK inhibitor PD-98059 abolished the effect of hemolysate on MAPK immunoreactivity.

Conclusions. Hemolysate produced contraction of rabbit BA, possibly by activation of MAPK, and therefore MAPK inhibitors may be useful in the treatment of cerebral vasospasm.