Browse

You are looking at 1 - 2 of 2 items for

  • By Author: Neuhuber, Birgit x
Clear All
Restricted access

Lauren Conova, Jennifer Vernengo, Ying Jin, B. Timothy Himes, Birgit Neuhuber, Itzhak Fischer, Anthony Lowman, Jennifer Vernengo, Ying Jin, B. Timothy Himes, Birgit Neuhuber, Itzhak Fischer and Anthony Lowman

Object

The authors investigated the feasibility of using injectable hydrogels, based on poly(N-isopropylacrylamide) (PNIPAAm), lightly cross-linked with polyethylene glycol (PEG) or methylcellulose (MC), to serve as injectable scaffolds for local delivery of neurotrophins and cellular transplants into the injured spinal cord. The primary aims of this work were to assess the biocompatibility of the scaffolds by evaluating graft cell survival and the host tissue immune response. The scaffolds were also evaluated for their ability to promote axonal growth through the action of released brain-derived neurotrophic factor (BDNF).

Methods

The in vivo performance of PNIPAAm-g-PEG and PNIPAAm-g-MC was evaluated using a rodent model of spinal cord injury (SCI). The hydrogels were injected as viscous liquids into the injury site and formed space-filling hydrogels. The host immune response and biocompatibility of the scaffolds were evaluated at 2 weeks by histological and fluorescent immunohistochemical analysis. Commercially available matrices were used as a control and examined for comparison.

Results

Experiments showed that the scaffolds did not contribute to an injury-related inflammatory response. PNIPAAm-g-PEG was also shown to be an effective vehicle for delivery of cellular transplants and supported graft survival. Additionally, PNIPAAm-g-PEG and PNIPAAm-g-MC are permissive to axonal growth and can serve as injectable scaffolds for local delivery of BDNF.

Conclusions

Based on the results, the authors suggest that these copolymers are feasible injectable scaffolds for cell grafting into the injured spinal cord and for delivery of therapeutic factors.

Restricted access

Birgit Neuhuber, Alissa L. Barshinger, Courtney Paul, Jed S. Shumsky, Takahiko Mitsui and Itzhak Fischer

Object

Using cellular transplants to treat spinal cord injury is a promising therapeutic strategy, but transplants grafted directly into the injury site can further damage the already compromised cord. To avoid additional trauma and to simplify translation to the clinic, it is advantageous to use less invasive delivery methods.

Methods

The authors compared the efficacy of intrathecal cell delivery at the lumbar region (lumbar puncture [LP]) to direct injection into a thoracic contusion injury using a mixed population of lineage-restricted neural precursor cells.

Results

Direct injection resulted in a higher volume of neural precursor cells located throughout the injury site, whereas fewer LP-delivered cells accumulated at the dorsal aspect of the injured cord. Both grafting methods were neuroprotective, resulting in reduction of injury size and greater tissue sparing compared with controls. Functional recovery was evaluated by assessing motor and bladder function. Animals that received cells via direct injection performed significantly better in the open-field locomotor test than did operated controls, while LP-treated animals showed intermediate recovery of function that did not differ statistically from that of either operated controls or directly injected animals. Bladder function, however, was significantly improved in both directly injected and LP-treated animals.

Conclusion

Grafting of stem cells via LP resulted in localized accumulation of cells at the injury site, neuroprotection, and modest recovery of function. Further optimization of the LP procedure by increasing the number of cells that are delivered and determining the optimal delivery schedule may further improve recovery to levels comparable to direct injection.