Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Katsumi Harimaya x
  • By Author: Nakashima, Yasuharu x
Clear All Modify Search
Restricted access

Hirokazu Saiwai, Seiji Okada, Mitsumasa Hayashida, Katsumi Harimaya, Yoshihiro Matsumoto, Ken-ichi Kawaguchi, Kazu Kobayakawa, Takeshi Maeda, Hideki Ohta, Kenzo Shirasawa, Kuniyoshi Tsuchiya, Kazumasa Terada, Kouzo Kaji, Takeshi Arizono, Taichi Saito, Masami Fujiwara, Yukihide Iwamoto and Yasuharu Nakashima

OBJECTIVE

Compression of the spinal cord by thoracic ossification of the posterior longitudinal ligament (T-OPLL) often causes severe thoracic myelopathy. Although surgery is the most effective treatment for T-OPLL, problems associated with surgical intervention require resolution because surgical outcomes are not always favorable, and a small number of patients experience deterioration of their neurological status after surgery. The aim of the present study was to examine the surgery-related risk factors contributing to poor clinical outcomes for myelopathy caused by T-OPLL.

METHODS

Data were extracted from the records of 55 patients with thoracic myelopathy due to T-OPLL at institutions in the Fukuoka Spine Group. The mean follow-up period was 5.3 years. Surgical outcomes were assessed using the Japanese Orthopaedic Association (JOA) scale. To investigate the definitive factors associated with surgical outcomes, univariate and multivariate regression analyses were performed with several patient-related and surgery-related factors, including preoperative comorbidities, radiological findings, JOA score, surgical methods, surgical outcomes, and complications.

RESULTS

Neurological status improved in 33 patients (60.0%) and deteriorated in 10 patients (18.2%) after surgery. The use of instrumentation was significantly associated with an improved outcome. In the comparison of surgical approaches, posterior decompression and fusion resulted in a significantly higher neurological recovery rate than did anterior decompression via a posterior approach and fusion or decompression alone. It was also found that postoperative neurological status was significantly poorer when there were fewer instrumented spinal levels than decompression levels. CSF leakage was a predictable risk factor for deterioration following surgery.

CONCLUSIONS

It is important to identify preventable risk factors for poor surgical outcomes for T-OPLL. The findings of the present study suggest that intraoperative CSF leakage and a lower number of instrumented spinal fusion levels than decompression levels were exacerbating factors for the neurological improvement in T-OPLL surgery.