Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Ting Lei x
  • By Author: Nakaji, Peter x
Clear All Modify Search
Free access

M. Yashar S. Kalani, Ting Lei, Nikolay L. Martirosyan, Mark E. Oppenlander, Robert F. Spetzler and Peter Nakaji

The mesial temporal lobe can be approached via a pterional or orbitozygomatic craniotomy, the subtemporal approach, or transcortically. Alternatively, the entire mesial temporal lobe can be accessed using a lateral supracerebellar transtentorial (SCTT) approach. Here we describe the technical nuances of patient positioning, craniotomy, supracerebellar dissection, and tentorial disconnection to traverse the tentorial incisura to arrive at the posterior mesial temporal lobe for a cavernous malformation. The SCTT approach is especially useful for lesions in the dominant temporal lobe where an anterolateral approach may endanger language centers or the vein of Labbé.

The video can be found here: https://youtu.be/D8mIR5yeiVw.

Free access

Ting Lei, Evgenii Belykh, Alexander B. Dru, Kaan Yagmurlu, Ali M. Elhadi, Peter Nakaji and Mark C. Preul

Chen Jingrun (1933–1996), perhaps the most prodigious mathematician of his time, focused on the field of analytical number theory. His work on Waring's problem, Legendre's conjecture, and Goldbach's conjecture led to progress in analytical number theory in the form of “Chen's Theorem,” which he published in 1966 and 1973. His early life was ravaged by the Second Sino-Japanese War and the Chinese Cultural Revolution. On the verge of solving Goldbach's conjecture in 1984, Chen was struck by a bicyclist while also bicycling and suffered severe brain trauma. During his hospitalization, he was also found to have Parkinson's disease. Chen suffered another serious brain concussion after a fall only a few months after recovering from the bicycle crash. With significant deficits, he remained hospitalized for several years without making progress while receiving modern Western medical therapies. In 1988 traditional Chinese medicine experts were called in to assist with his treatment. After a year of acupuncture and oxygen therapy, Chen could control his basic bowel and bladder functions, he could walk slowly, and his swallowing and speech improved. When Chen was unable to produce complex work or finish his final work on Goldbach's conjecture, his mathematical pursuits were taken up vigorously by his dedicated students. He was able to publish Youth Math, a mathematics book that became an inspiration in Chinese education. Although he died in 1996 at the age of 63 after surviving brutal political repression, being deprived of neurological function at the very peak of his genius, and having to be supported by his wife, Chen ironically became a symbol of dedication, perseverance, and motivation to his students and associates, to Chinese youth, to a nation, and to mathematicians and scientists worldwide.

Restricted access

Evgenii Belykh, Kaan Yağmurlu, Ting Lei, Sam Safavi-Abbasi, Mark E. Oppenlander, Nikolay L. Martirosyan, Vadim A. Byvaltsev, Robert F. Spetzler, Peter Nakaji and Mark C. Preul

OBJECTIVE

The best approach to deep-seated lateral and third ventricle lesions is a function of lesion characteristics, location, and relationship to the ventricles. The authors sought to examine and compare angles of attack and surgical freedom of anterior ipsilateral and contralateral interhemispheric transcallosal approaches to the frontal horn of the lateral ventricle using human cadaveric head dissections. Illustrative clinical experiences with a contralateral interhemispheric transcallosal approach and an anterior interhemispheric transcallosal transchoroidal approach are also related.

METHODS

Five formalin-fixed human cadaveric heads (10 sides) were examined microsurgically. CT and MRI scans obtained before dissection were uploaded and fused into the navigation system. The authors performed contralateral and ipsilateral transcallosal approaches to the lateral ventricle. Using the navigation system, they measured areas of exposure, surgical freedom, angles of attack, and angle of view to the surgical surface. Two clinical cases are described.

RESULTS

The exposed areas of the ipsilateral (mean [± SD] 313.8 ± 85.0 mm2) and contralateral (344 ± 87.73 mm2) interhemispheric approaches were not significantly different (p = 0.12). Surgical freedom and vertical angles of attack were significantly larger for the contralateral approach to the most midsuperior reachable point (p = 0.02 and p = 0.01, respectively) and to the posterosuperior (p = 0.02 and p = 0.04) and central (p = 0.04 and p = 0.02) regions of the lateral wall of the lateral ventricle. Surgical freedom and vertical angles of attack to central and anterior points on the floor of the lateral ventricle did not differ significantly with approach. The angle to the surface of the caudate head region was less steep for the contralateral (135.6° ± 15.6°) than for the ipsilateral (152.0° ± 13.6°) approach (p = 0.02).

CONCLUSIONS

The anterior contralateral interhemispheric transcallosal approach provided a more expansive exposure to the lower two-thirds of the lateral ventricle and striothalamocapsular region. In normal-sized ventricles, the foramen of Monro and the choroidal fissure were better visualized through the lateral ventricle ipsilateral to the craniotomy than through the contralateral approach.

Full access

Evgenii Belykh, Ting Lei, Sam Safavi-Abbasi, Kaan Yagmurlu, Rami O. Almefty, Hai Sun, Kaith K. Almefty, Olga Belykh, Vadim A. Byvaltsev, Robert F. Spetzler, Peter Nakaji and Mark C. Preul

OBJECTIVE

Microvascular anastomosis is a basic neurosurgical technique that should be mastered in the laboratory. Human and bovine placentas have been proposed as convenient surgical practice models; however, the histologic characteristics of these tissues have not been compared with human cerebral vessels, and the models have not been validated as simulation training models. In this study, the authors assessed the construct, face, and content validities of microvascular bypass simulation models that used human and bovine placental vessels.

METHODS

The characteristics of vessel segments from 30 human and 10 bovine placentas were assessed anatomically and histologically. Microvascular bypasses were performed on the placenta models according to a delineated training module by “trained” participants (10 practicing neurosurgeons and 7 residents with microsurgical experience) and “untrained” participants (10 medical students and 3 residents without experience). Anastomosis performance and impressions of the model were assessed using the Northwestern Objective Microanastomosis Assessment Tool (NOMAT) scale and a posttraining survey.

RESULTS

Human placental arteries were found to approximate the M2–M4 cerebral and superficial temporal arteries, and bovine placental veins were found to approximate the internal carotid and radial arteries. The mean NOMAT performance score was 37.2 ± 7.0 in the untrained group versus 62.7 ± 6.1 in the trained group (p < 0.01; construct validity). A 50% probability of allocation to either group corresponded to 50 NOMAT points. In the posttraining survey, 16 of 17 of the trained participants (94%) scored the model's replication of real bypass surgery as high, and 16 of 17 (94%) scored the difficulty as “the same” (face validity). All participants, 30 of 30 (100%), answered positively to questions regarding the ability of the model to improve microsurgical technique (content validity).

CONCLUSIONS

Human placental arteries and bovine placental veins are convenient, anatomically relevant, and beneficial models for microneurosurgical training. Microanastomosis simulation using these models has high face, content, and construct validities. A NOMAT score of more than 50 indicated successful performance of the microanastomosis tasks.