Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Sameer A. Sheth x
  • By Author: Mikell, Charles B. x
Clear All Modify Search
Full access

Charles B. Mikell, Saurabh Sinha and Sameer A. Sheth

The main objectives of this review were to provide an update on the progress made in understanding specific circuit abnormalities leading to psychotic symptoms in schizophrenia and to propose rational targets for therapeutic deep brain stimulation (DBS). Refractory schizophrenia remains a major unsolved clinical problem, with 10%–30% of patients not responding to standard treatment options. Progress made over the last decade was analyzed through reviewing structural and functional neuroimaging studies in humans, along with studies of animal models of schizophrenia. The authors reviewed theories implicating dysfunction in dopaminergic and glutamatergic signaling in the pathophysiology of the disorder, paying particular attention to neurosurgically relevant nodes in the circuit. In this context, the authors focused on an important pathological circuit involving the associative striatum, anterior hippocampus, and ventral striatum, and discuss the possibility of targeting these nodes for therapeutic neuromodulation with DBS. Finally, the authors examined ethical considerations in the treatment of these vulnerable patients. The functional anatomy of neural circuits relevant to schizophrenia remains of great interest to neurosurgeons and psychiatrists and lends itself to the development of specific targets for neuromodulation. Ongoing progress in the understanding of these structures will be critical to the development of potential neurosurgical treatments of schizophrenia.

Free access

Patrick J. Karas, Charles B. Mikell, Eisha Christian, Mark A. Liker and Sameer A. Sheth

Deep brain stimulation (DBS), the practice of placing electrodes deep into the brain to stimulate subcortical structures with electrical current, has been increasing as a neurosurgical procedure over the past 15 years. Originally a treatment for essential tremor, DBS is now used and under investigation across a wide spectrum of neurological and psychiatric disorders. In addition to applying electrical stimulation for clinical symptomatic relief, the electrodes implanted can also be used to record local electrical activity in the brain, making DBS a useful research tool. Human single-neuron recordings and local field potentials are now often recorded intraoperatively as electrodes are implanted. Thus, the increasing scope of DBS clinical applications is being matched by an increase in investigational use, leading to a rapidly evolving understanding of cortical and subcortical neurocircuitry. In this review, the authors discuss recent innovations in the clinical use of DBS, both in approved indications as well as in indications under investigation. Deep brain stimulation as an investigational tool is also reviewed, paying special attention to evolving models of basal ganglia and cortical function in health and disease. Finally, the authors look to the future across several indications, highlighting gaps in knowledge and possible future directions of DBS treatment.

Full access

Brett E. Youngerman, Andrew K. Chan, Charles B. Mikell, Guy M. McKhann and Sameer A. Sheth

OBJECTIVE

Deep brain stimulation (DBS) is an emerging treatment option for an expanding set of neurological and psychiatric diseases. Despite growing enthusiasm, the patterns and implications of this rapid adoption are largely unknown. National trends in DBS surgery performed for all indications between 2002 and 2011 are reported.

METHODS

Using a national database of hospital discharges, admissions for DBS for 14 indications were identified and categorized as either FDA approved, humanitarian device exempt (HDE), or emerging. Trends over time were examined, differences were analyzed by univariate analyses, and outcomes were analyzed by hierarchical regression analyses.

RESULTS

Between 2002 and 2011, there were an estimated 30,490 discharges following DBS for approved indications, 1647 for HDE indications, and 2014 for emerging indications. The volume for HDE and emerging indications grew at 36.1% annually in comparison with 7.0% for approved indications. DBS for emerging indications occurred at hospitals with more neurosurgeons and neurologists locally, but not necessarily at those with the highest DBS caseloads. Patients treated for HDE and emerging indications were younger with lower comorbidity scores. HDE and emerging indications were associated with greater rates of reported complications, longer lengths of stay, and greater total costs.

CONCLUSIONS

DBS for HDE and emerging indications underwent rapid growth in the last decade, and it is not exclusively the most experienced DBS practitioners leading the charge to treat the newest indications. Surgeons may be selecting younger and healthier patients for their early experiences. Differences in reported complication rates warrant further attention and additional costs should be anticipated as surgeons gain experience with new patient populations and targets.

Full access

Lauren T. Brown, Charles B. Mikell, Brett E. Youngerman, Yuan Zhang, Guy M. McKhann II and Sameer A. Sheth

OBJECT

The object of this study was to perform a systematic review, according to Preferred Reporting Items of Systematic reviews and Meta-Analyses (PRISMA) and Agency for Healthcare Research and Quality (AHRQ) guidelines, of the clinical efficacy and adverse effect profile of dorsal anterior cingulotomy compared with anterior capsulotomy for the treatment of severe, refractory obsessive-compulsive disorder (OCD).

METHODS

The authors included studies comparing objective clinical measures before and after cingulotomy or capsulotomy (surgical and radiosurgical) in patients with OCD. Only papers reporting the most current follow-up data for each group of investigators were included. Studies reporting results on patients undergoing one or more procedures other than cingulotomy or capsulotomy were excluded. Case reports and studies with a mean follow-up shorter than 12 months were excluded. Clinical response was defined in terms of a change in the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score. The authors searched MEDLINE, PubMed, PsycINFO, Scopus, and Web of Knowledge through October 2013. English and non-English articles and abstracts were reviewed.

RESULTS

Ten studies involving 193 participants evaluated the length of follow-up, change in the Y-BOCS score, and postoperative adverse events (AEs) after cingulotomy (n = 2 studies, n = 81 participants) or capsulotomy (n = 8 studies, n = 112 participants). The average time to the last follow-up was 47 months for cingulotomy and 60 months for capsulotomy. The mean reduction in the Y-BOCS score at 12 months’ follow-up was 37% for cingulotomy and 55% for capsulotomy. At the last follow-up, the mean reduction in Y-BOCS score was 37% for cingulotomy and 57% for capsulotomy. The average full response rate to cingulotomy at the last follow-up was 41% (range 38%–47%, n = 2 studies, n = 51 participants), and to capsulotomy was 54% (range 37%–80%, n = 5 studies, n = 50 participants). The rate of transient AEs was 14.3% across cingulotomy studies (n = 116 procedures) and 56.2% across capsulotomy studies (n = 112 procedures). The rate of serious or permanent AEs was 5.2% across cingulotomy studies and 21.4% across capsulotomy studies.

CONCLUSIONS

This systematic review of the literature supports the efficacy of both dorsal anterior cingulotomy and anterior capsulotomy in this highly treatment-refractory population. The observational nature of available data limits the ability to directly compare these procedures. Controlled or head-to-head studies are necessary to identify differences in efficacy or AEs and may lead to the individualization of treatment recommendations.

Free access

Laura Salgado-López, Edith Pomarol-Clotet, Alexandra Roldán, Rodrigo Rodríguez, Joan Molet, Salvador Sarró, Enric Álvarez and Iluminada Corripio