Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Andrew D. Parent x
  • By Author: Meguro, Toshinari x
Clear All Modify Search
Restricted access

Yasushi Miyagi, Robin C. Carpenter, Toshinari Meguro, Andrew D. Parent and John H. Zhang

Object. Rho A, a small guanosine triphosphate—binding protein, and rho kinases have been suggested to play an important role in the agonist-induced myofilament Ca++ sensitization and cytoskeletal organization of smooth-muscle cells. To discover their possible roles in the prolonged contraction seen in cerebral vasospasm, the authors investigated the messenger (m)RNA expressions of rho A and rho-associated kinases α and β in the basilar artery (BA) of a rat double cisternal blood—injection model.

Methods. An experimental subarachnoid hemorrhage (SAH) was achieved in rats by twice injecting autologous arterial blood into the cisterna magna of each animal. The mRNAs for rho A and rho-associated kinases α and β of the rat BA were analyzed using reverse transcription—polymerase chain reaction (RT-PCR). The cisternal blood injection induced a marked corrugation of elastic lamina and contraction of smooth-muscle cells observed with the aid of light and transmission electron microscopy in the rat BA on Days 3, 5, and 7. Results of the RT-PCR revealed that mRNAs for rho A and rho kinases α and β were expressed in the rat BA and that they were significantly upregulated and reached their peaks on Day 5.

Conclusions. The mRNA upregulation of these proteins indicates that activation of rho A/rho kinase—related signal transduction pathways is involved in the development of long-lasting contraction of cerebral arteries after SAH.

Restricted access

Toshinari Meguro, Christoph P. R. Klett, Betty Chen, Andrew D. Parent and John H. Zhang

Object. Oxyhemoglobin (OxyHb) released from hemolysed erythrocytes has been considered to be responsible for cerebral vasospasm after subarachnoid hemorrhage. The authors previously reported that OxyHb produced apoptosis in cultured vascular endothelial cells. The change in intracellular Ca++ homeostasis was expected to be one of the possible mechanisms of the cytotoxic effects of OxyHb. This study was undertaken to investigate the protective effects of Ca++-channel blockers on OxyHb-induced apoptosis.

Methods. Cultured bovine coronary artery and brain microvascular endothelial cells (passages 5–9) were used. A cell density study, immunohistochemical staining, and DNA fragmentation analysis were performed to confirm apoptosis. Various concentrations (1–50 µM) of OxyHb were used for 24- to 72-hour incubations with and without Ca++-channel blockers.

Oxyhemoglobin produced cytotoxicity leading to cell detachment from the culture dish in time- and concentration-dependent manners. The highest dose (50 µM) of OxyHb produced cell detachment after a 24-hour incubation, and the lower doses (1–10 µM) produced cell detachment after 48 to 72 hours. Immunohistochemical analysis showed that apoptosis occurred in cells that were still attached to the side of the culture dish after 48 to 72 hours of OxyHb treatment (5 µM). The OxyHb (10 µM) produced DNA ladders at 48 to 72 hours. Three Ca++-channel blockers were used to prevent the toxic effect of OxyHb. The voltage-dependent Ca++-channel blocker nicardipine (1 µM), the voltage-independent Ca++-channel blocker econazole (10 µM), and the inorganic Ca++-channel blocker lanthanum (100 µM) all failed to prevent cell detachment or DNA ladders produced by OxyHb. These results were similar in both cell lines.

Conclusions. Oxyhemoglobin produced apoptotic changes in cultured vascular endothelial cells, and Ca++-channel blockers did not prevent OxyHb-induced apoptosis.