Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Rudolf Fahlbusch x
  • By Author: Marschalek, Rolf x
Clear All Modify Search
Restricted access

Uwe M. H. Schrell, Michael G. Rittig, Marc Anders, Uwe H. Koch, Rolf Marschalek, Franklin Kiesewetter and Rudolf Fahlbusch

✓ In this paper the authors present the first evidence that meningiomas respond to treatment with hydroxyurea. Hydroxyurea was administered as an adjunct chemotherapeutic treatment in patients with recurrent and unresectable meningiomas. Hydroxyurea was used because experimental data demonstrated that it inhibits growth of cultured human meningioma cells and meningioma transplants in nude mice by inducing apoptosis. The authors therefore treated four selected patients with hydroxyurea. All patients had undergone multiple gross resections and all except one received radio-therapy. Three patients with recurrent Grade I meningiomas assessed according to World Health Organization (WHO) guidelines received hydroxyurea because of an increased tumor growth rate, documented by magnetic resonance (MR) imaging, within a 6- or 12-month interval. A fourth patient with a malignant meningioma (WHO Grade III) began a course of treatment with hydroxyurea immediately after his sixth palliative operation without waiting for another relapse to be demonstrated on MR imaging. Because of their location and invasive growth behavior none of the meningiomas could have been removed completely by surgical intervention.

All patients received hydroxyurea at a dosage level of 1000 to 1500 mg/day (approximately 20 mg/kg/day). In a man with a large sphenoid wing meningioma invading the right cavernous sinus and the temporal base, the intracranial tumor mass was reduced by 60% during 6 months of treatment. A woman with a large ball-shaped meningioma of the right sphenoid wing invading the cavernous sinus exhibited a 74% decrease of the initial tumor volume in 10 months of treatment with oral hydroxyurea. Serial MR images obtained monthly revealed that the process of size reduction was continuous and proportionate. The shrinkage of the tumor was accompanied by a complete remission of symptomatic trigeminal neuralgia after 2 months and by improved abducent paresis after 5 months. The third patient had a slowly growing meningioma that exhibited a 15% reduction in mass when reassessed after 5 months of hydroxyurea treatment. The fourth patient with the malignant meningioma in the left cerebellopontine angle has had no recurrence for 24 months. Long-term treatment with hydroxyurea may result in full remission of tumors in meningioma patients.

The preliminary data indicate that hydroxyurea provides true medical treatment in patients with unresectable and recurrent meningiomas, replacing palliative surgery and radiotherapy in the management of this disease.

Restricted access

Uwe M. H. Schrell, Michael G. Rittig, Marc Anders, Franklin Kiesewetter, Rolf Marschalek, Uwe H. Koch and Rudolf Fahlbusch

✓ Meningiomas, which invade intracranial bone structures and the adjacent connective tissue, are frequently unresectable because of their aggressive and recalcitrant growth behavior. They have a high recurrence rate, and in approximately 10% of these tumors there is an increased risk of malignancy. Significant morbidity and mortality rates associated with recurrent meningiomas demand nonsurgical approaches. To date, adjuvant hormonal treatment has not proven beneficial. The anticancer drug hydroxyurea was therefore tested for its potential use in the treatment of meningiomas.

Early-passaged cell cultures were established from 20 different meningiomas. The addition of 5 × 10−4 and 10−3 M hydroxyurea over a period of 5 to 9 days resulted in a remarkable decrease in cell proliferation and even blocked tumor cell growth when compared with untreated cells. A significant arrest of meningioma cell growth in the S phase of the cell cycle was revealed on DNA flow cytometry.

Electron micrographs of hydroxyurea-treated tumor cells showed ultrastructural features consistent with apoptosis, and light microscopy demonstrated DNA fragmentation by in situ DNA strand break labeling. Short-term treatment of meningioma cell cultures with hydroxyurea for 24 to 48 hours resulted in discrete oligonucleosomal fragments (DNA ladder), another characteristic sign of apoptosis. In addition to the in vitro studies, tissue from five different meningiomas was transplanted into nude mice followed by treatment with 0.5 mg/g body weight hydroxyurea over 15 days. In situ DNA strand break labeling demonstrated DNA fragmentation in distinct regions with different tumor cell densities in all hydroxyurea-treated meningioma transplants.

These data provide evidence that hydroxyurea is a powerful inhibitor of meningioma cell growth, most likely by causing apoptosis in the tumor cells. Thus, hydroxyurea may be a suitable chemotherapeutic agent for the long-term treatment of unresectable or semi- to malignant meningiomas, or for preventing recurrent growth of meningiomas after resection.

Full access

Uwe M. H. Schrell, Michael G. Rittig, Marc Anders, Franklin Kiesewetter, Rolf Marschalek, Uwe H. Koch and Rudolf Fahlbusch

Meningiomas, which invade intracranial bone structures and the adjacent connective tissue, are frequently unresectable because of their aggressive and recalcitrant growth behavior. They have a high recurrence rate, and in approximately 10% of these tumors there is an increased risk of malignancy. Significant morbidity and mortality rates associated with recurrent meningiomas demand nonsurgical approaches. To date, adjuvant hormonal treatment has not proven beneficial. The anticancer drug hydroxyurea was therefore tested for its potential use in the treatment of meningiomas.

Early-passaged cell cultures were established from 20 different meningiomas. The addition of 5 X 10−4 and 10−3 M hydroxyurea over a period of 5 to 9 days resulted in a remarkable decrease in cell proliferation and even blocked tumor cell growth when compared with untreated cells. A significant arrest of meningioma cell growth in the S phase of the cell cycle was revealed on DNA flow cytometry.

Electron micrographs of hydroxyurea-treated tumor cells showed ultrastructural features consistent with apoptosis, and light microscopy demonstrated DNA fragmentation by in situ DNA strand break labeling. Short-term treatment of meningioma cell cultures with hydroxyurea for 24 to 48 hours resulted in discrete oligonucleosomal fragments (DNA ladder), another characteristic sign of apoptosis. In addition to the in vitro studies, tissue from five different meningiomas was transplanted into nude mice followed by treatment with 0.5 mg/g body weight hydroxyurea over 15 days. In situ DNA strand break labeling demonstrated DNA fragmentation in distinct regions with different tumor cell densities in all hydroxyurea-treated meningioma transplants.

These data provide evidence that hydroxyurea is a powerful inhibitor of meningioma cell growth, most likely by causing apoptosis in the tumor cells. Thus, hydroxyurea may be a suitable chemotherapeutic agent for the long-term treatment of unresectable or semi- to malignant meningiomas, or for preventing recurrent growth of meningiomas after resection.

Full access

Uwe M. H. Schrell, Michael G. Rittig, Marc Anders, Uwe H. Koch, Rolf Marschalek, Franklin Kiesewetter and Rudolf Fahlbusch

In this paper the authors present the first evidence that meningiomas respond to treatment with hydroxyurea. Hydroxyurea was administered as an adjunct chemotherapeutic treatment in patients with recurrent and unresectable meningiomas. Hydroxyurea was used because experimental data demonstrated that it inhibits growth of cultured human meningioma cells and meningioma transplants in nude mice by inducing apoptosis. The authors therefore treated four selected patients with hydroxyurea. All patients had undergone multiple gross resections and all except one received radiotherapy. Three patients with recurrent Grade I meningiomas assessed according to World Health Organization (WHO) guidelines received hydroxyurea because of an increased tumor growth rate, documented by magnetic resonance (MR) imaging, within a 6- or 12-month interval. A fourth patient with a malignant meningioma (WHO Grade III) began a course of treatment with hydroxyurea immediately after his sixth palliative operation without waiting for another relapse to be demonstrated on MR imaging. Because of their location and invasive growth behavior none of the meningiomas could have been removed completely by surgical intervention.

All patients received hydroxyurea at a dosage level of 1000 to 1500 mg/day (approximately 20 mg/kg/day). In a man with a large sphenoid wing meningioma invading the right cavernous sinus and the temporal base, the intracranial tumor mass was reduced by 60% during 6 months of treatment. A woman with a large ball-shaped meningioma of the right sphenoid wing invading the cavernous sinus exhibited a 74% decrease of the initial tumor volume in 10 months of treatment with oral hydroxyurea. Serial MR images obtained monthly revealed that the process of size reduction was continuous and proportionate. The shrinkage of the tumor was accompanied by a complete remission of symptomatic trigeminal neuralgia after 2 months and by improved abducent paresis after 5 months. The third patient had a slowly growing meningioma that exhibited a 15% reduction in mass when reassessed after 5 months of hydroxyurea treatment. The fourth patient with the malignant meningioma in the left cerebellopontine angle has had no recurrence for 24 months. Long-term treatment with hydroxyurea may result in full remission of tumors in meningioma patients.

The preliminary data indicate that hydroxyurea provides true medical treatment in patients with unresectable and recurrent meningiomas, replacing palliative surgery and radiotherapy in the management of this disease.

Full access

Uwe M. H. Schrell, Uwe Koch, Rolf Marschalek, Thomas Schrauzer, Marc Anders, Eric Adams and Rudolf Fahlbusch

It has been demonstrated that growth of cerebral meningiomas found in humans is controlled by a variety of factors, including growth factors, aminergic agents, neuropeptides, and steroids. The authors investigated the presence and function of the cytokines leukemia inhibitory factor (LIF), interleukin-6 (IL-6), and oncostatin M (OSM) on meningioma cell proliferation.

Active transcription of LIF, IL-6, OSM, their related receptors (LIF-R, IL-6-R, gp130), and the consecutive signal-transducing molecules (STAT 1, STAT 3, and STAT 5a) were analyzed in reverse transcriptase-polymerase chain reaction experiments.

The presence of endogenous LIF, IL-6, and OSM proteins was demonstrated in the supernatant of cultured meningioma cells using enzyme-linked immunosorbent assay and Western blot experiments, thus indicating an autocrine signaling pathway for all three cytokines.

The biological function of all three cytokines was evaluated by studying their effects on meningioma cell growth. Recombinant LIF and IL-6 showed no significant growth modulating effects; however, recombinant OSM decreased meningioma cell growth by 66%. The antiproliferative potency of OSM was demonstrated by cell count experiments, [3H]thymidine incorporation assay, and cell cycle analysis. These in vitro data support the concept that growth of meningioma cells may be modulated by cytokines and also indicates that recombinant OSM may be one of the future candidates for use in the adjuvant treatment of inoperable and recurrent meningiomas.

Restricted access

Uwe M. H. Schrell, Hans Uwe Koch, Rolf Marschalek, Thomas Schrauzer, Marc Anders, Eric Adams and Rudolf Fahlbusch

Object. It has been demonstrated that growth of cerebral meningiomas found in humans is controlled by a variety of factors, including growth factors, aminergic agents, neuropeptides, and steroids. To further our knowledge of this process, the authors investigated the presence and function of the cytokines leukemia inhibitory factor (LIF), interleukin-6 (IL-6), and oncostatin M (OSM) on meningioma cell proliferation.

Methods. Active transcription of LIF, IL-6, and OSM, their related receptors (LIF-R, IL-6-R, and gp130), and the consecutive signal-transducing molecules (STAT 1, STAT 3, and STAT 5a) were analyzed in reverse transcriptase—polymerase chain reaction experiments.

The presence of endogenous LIF, IL-6, and OSM proteins was demonstrated in the supernatant of cultured meningioma cells using the enzyme-linked immunosorbent assay and Western blot experiments, thus indicating an autocrine signaling pathway for all three cytokines.

The biological function of all three cytokines was evaluated by studying their effects on meningioma cell growth. Recombinant LIF and IL-6 showed no significant growth modulating effects; however, recombinant OSM decreased meningioma cell growth by 66%. The antiproliferative potency of OSM was demonstrated by cell count experiments, the [3H]thymidine incorporation assay, and cell cycle analysis.

Conclusions. These in vitro data support the concept that growth of meningioma cells may be modulated by cytokines, and they also indicate that recombinant OSM may be one future candidate for use in the adjuvant treatment of inoperable and recurrent meningiomas.