Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: C. Edward Dixon x
  • By Author: Marion, Donald W. x
Clear All Modify Search
Restricted access

Michael L. Forbes, Robert S. B. Clark, C. Edward Dixon, Steven H. Graham, Donald W. Marion, Steven T. Dekosky, Joanne K. Schiding and Patrick M. Kochanek

Minimizing secondary injury after severe traumatic brain injury (TBI) is the primary goal of cerebral resuscitation. For more than two decades, hyperventilation has been one of the most often used strategies in the management of TBI. Laboratory and clinical studies, however, have verified a post-TBI state of reduced cerebral perfusion that may increase the brain's vulnerability to secondary injury. In addition, it has been suggested in a clinical study that hyperventilation may worsen outcome after TBI.

Object. Using the controlled cortical impact model in rats, the authors tested the hypothesis that aggressive hyperventilation applied immediately after TBI would worsen functional outcome, expand the contusion, and promote neuronal death in selectively vulnerable hippocampal neurons.

Methods. Twenty-six intubated, mechanically ventilated, isoflurane-anesthetized male Sprague—Dawley rats were subjected to controlled cortical impact (4 m/second, 2.5-mm depth of deformation) and randomized after 10 minutes to either hyperventilation (PaCO2 = 20.3 ± 0.7 mm Hg) or normal ventilation groups (PaCO2 = 34.9 ± 0.3 mm Hg) containing 13 rats apiece and were treated for 5 hours. Beam balance and Morris water maze (MWM) performance latencies were measured in eight rats from each group on Days 1 to 5 and 7 to 11, respectively, after controlled cortical impact. The rats were killed at 14 days postinjury, and serial coronal sections of their brains were studied for contusion volume and hippocampal neuron counting (CA1, CA3) by an observer who was blinded to their treatment group.

Mortality rates were similar in both groups (two of 13 in the normal ventilation compared with three of 13 in the hyperventilation group, not significant [NS]). There were no differences between the groups in mean arterial blood pressure, brain temperature, and serum glucose concentration. There were no differences between groups in performance latencies for both beam balance and MWM or contusion volume (27.8 ± 5.1 mm3 compared with 27.8 ± 3.3 mm3, NS) in the normal ventilation compared with the hyperventilation groups, respectively. In brain sections cut from the center of the contusion, hippocampal neuronal survival in the CA1 region was similar in both groups; however, hyperventilation reduced the number of surviving hippocampal CA3 neurons (29.7 cells/hpf, range 24.2–31.7 in the normal ventilation group compared with 19.9 cells/hpf, range 17–23.7 in the hyperventilation group [25th–75th percentiles]; *p < 0.05, Mann—Whitney rank-sum test).

Conclusions. Aggressive hyperventilation early after TBI augments CA3 hippocampal neuronal death; however, it did not impair functional outcome or expand the contusion. These data indicate that CA3 hippocampal neurons are selectively vulnerable to the effects of hyperventilation after TBI. Further studies delineating the mechanisms underlying these effects are needed, because the injudicious application of hyperventilation early after TBI may contribute to secondary neuronal injury.

Restricted access

Amy K. Wagner, Dianxu Ren, Yvette P. Conley, Xiecheng Ma, Mary E. Kerr, Ross D. Zafonte, Ava M. Puccio, Donald W. Marion and C. Edward Dixon

Object

Dopamine (DA) pathways have been implicated in cognitive deficits after traumatic brain injury (TBI). Both sex and the dopamine transporter (DAT) 3′ variable number of tandem repeat polymorphism have been associated with differences in DAT protein density, and DAT protein affects both presynaptic DA release, through reverse transport, and DA reuptake. Catecholamines and associated metabolites are subject to autooxidation, resulting in the formation of reactive oxygen species that may contribute to subsequent oxidative injury. The purpose of this study was to determine associations between factors that affect DAT expression and cerebrospinal fluid (CSF) DA and metabolite levels after severe TBI.

Methods

Sixty-three patients with severe TBI (Glasgow Coma Scale score ≤ 8) were evaluated. The patients' genotypes were obtained using previously banked samples of CSF, and serial CSF samples (416 samples) were used to evaluate DA and metabolite levels. High-performance liquid chromatography was used to determine CSF levels of DA, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) during the first 5 days after injury.

Mixed-effects multivariate regression modeling revealed that patients with the DAT 10/10 genotype had higher CSF DA levels than patients with either the DAT 9/9 or DAT 9/10 genotypes (p = 0.009). Females with the DAT 10/10 genotype had higher CSF DA levels than females with the DAT 9/9 or DAT 9/10 genotypes, and sex was associated with higher DOPAC levels (p = 0.004). Inotrope administration also contributed to higher DA levels (p = 0.002).

Conclusions

In addition to systemic administration of DA, inherent factors such as sex and DAT genotype affect post-TBI CSF DA and DA metabolite levels, a phenomenon that may modulate susceptibility to DA-mediated oxidative injury.