Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Yao Wang x
  • By Author: Li, Xi-Feng x
Clear All Modify Search
Restricted access

Xin Zhang, Tamrakar Karuna, Zhi-Qiang Yao, Chuan-Zhi Duan, Xue-Min Wang, Shun-Ting Jiang, Xi-Feng Li, Jia-He Yin, Xu-Ying He, Shen-Quan Guo, Yun-Chang Chen, Wen-Chao Liu, Ran Li and Hai-Yan Fan


Among clinical and morphological criteria, hemodynamics is the main predictor of aneurysm growth and rupture. This study aimed to identify which hemodynamic parameter in the parent artery could independently predict the rupture of anterior communicating artery (ACoA) aneurysms by using multivariate logistic regression and two-piecewise linear regression models. An additional objective was to look for a more simplified and convenient alternative to the widely used computational fluid dynamics (CFD) techniques to detect wall shear stress (WSS) as a screening tool for predicting the risk of aneurysm rupture during the follow-up of patients who did not undergo embolization or surgery.


One hundred sixty-two patients harboring ACoA aneurysms (130 ruptured and 32 unruptured) confirmed by 3D digital subtraction angiography at three centers were selected for this study. Morphological and hemodynamic parameters were evaluated for significance with respect to aneurysm rupture. Local hemodynamic parameters were obtained by MR angiography and transcranial color-coded duplex sonography to calculate WSS magnitude. Multivariate logistic regression and a two-piecewise linear regression analysis were performed to identify which hemodynamic parameter independently characterizes the rupture status of ACoA aneurysms.


Univariate analysis showed that WSS (p < 0.001), circumferential wall tension (p = 0.005), age (p < 0.001), the angle between the A1 and A2 segments of the anterior cerebral artery (p < 0.001), size ratio (p = 0.023), aneurysm angle (p < 0.001), irregular shape (p = 0.005), and hypertension (grade II) (p = 0.006) were significant parameters. Multivariate analyses showed significant association between WSS in the parent artery and ACoA aneurysm rupture (p = 0.0001). WSS magnitude, evaluated by a two-piecewise linear regression model, was significantly correlated with the rupture of the ACoA aneurysm when the magnitude was higher than 12.3 dyne/cm2 (HR 7.2, 95% CI 1.5–33.6, p = 0.013).


WSS in the parent artery may be one of the reliable hemodynamic parameters characterizing the rupture status of ACoA aneurysms when the WSS magnitude is higher than 12.3 dyne/cm2. Analysis showed that with each additional unit of WSS (even with a 1-unit increase of WSS), there was a 6.2-fold increase in the risk of rupture for ACoA aneurysms.