Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Matthew D. Smyth x
  • By Author: Lawton, Michael T. x
Clear All Modify Search
Restricted access

Matthew D. Smyth, Penny K. Sneed, Samuel F. Ciricillo, Michael S. Edwards, William M. Wara, David A. Larson, Michael T. Lawton, Philip H. Gutin and Michael W. Mcdermott

Object. Stereotactic radiosurgery for arteriovenous malformations (AVMs) is an accepted treatment option, but few reports have been published on the results of this treatment in children. In this study the authors describe a series of pediatric patients with a minimum follow-up duration of 36 months.

Methods. From 1991 to 1997, 40 children (26 boys and 14 girls) with AVMs were treated with radiosurgery at the University of California at San Francisco (UCSF). Follow-up information was available for 31 children (20 boys and 11 girls) in whom the median age at initial treatment was 11.2 years (range 3.4–17.5 years). The median follow-up duration was 60 months (range 6–99 months). Sixteen percent of the AVMs were Spetzler—Martin Grade II; 68%, Grade III; 10%, Grade IV; and 6%, Grade V. The mean volume of the AVMs was 5.37 cm3 and the median volume was 1.6 cm3. The mean marginal dose of radiation was 16.7 Gy and the median dose was 18 Gy (range 12–19 Gy).

Angiography performed in 26 children confirmed obliteration of the AVM nidus in nine patients (35%), partial response in 16 patients (62%), and no response in one patient (4%). In five patients who refused angiography, magnetic resonance (MR) imaging revealed obliteration in two patients and partial response in three patients, bringing the overall obliteration rate associated with initial radiosurgery to 35%. Logistic regression analysis confirmed a significant correlation between marginal dose prescription and response (p = 0.025); in AVMs that received at least 18 Gy there was a 10-fold increase in the obliteration rate (63%) over AVMs that received a lower dose. Lesions smaller than 3 cm3 were associated with a sixfold increased obliteration rate (53%) over lesions larger than 3 cm3 (8%), but AVM volume was not a statistically significant predictor of response (p = 0.09). Twelve patients have since undergone repeated radiosurgery and are currently being followed up with serial MR imaging studies (in five cases, the AVM is now obliterated). During the follow-up period (1918 patient-months) there were eight hemorrhages in five patients, with a cumulative posttreatment hemorrhage rate of 3.2%/patient/year in the 1st year and a rate of 4.3%/patient/year over the first 3 years. There were two permanent neurological complications (6%) and no deaths in this study.

Conclusions. The lower overall obliteration rate reported in this series is most likely due to the larger mean AVM volumes treated at UCSF as well as conservative dose—volume prescriptions delivered to children. Significantly higher obliteration rates were observed when a marginal radiation dose of at least 18 Gy was delivered. The permanent complication rate is low and should encourage those treating children to use doses similar to those used in adults.

Full access

Matthew B. Potts, Sunil A. Sheth, Jonathan Louie, Matthew D. Smyth, Penny K. Sneed, Michael W. McDermott, Michael T. Lawton, William L. Young, Steven W. Hetts, Heather J. Fullerton and Nalin Gupta


Stereotactic radiosurgery (SRS) is an established treatment modality for brain arteriovenous malformations (AVMs) in children, but the optimal treatment parameters and associated treatment-related complications are not fully understood. The authors present their single-institution experience of using SRS, at a relatively low marginal dose, to treat AVMs in children for nearly 20 years; they report angiographic outcomes, posttreatment hemorrhage rates, adverse treatment-related events, and functional outcomes.


The authors conducted a retrospective review of 2 cohorts of children (18 years of age or younger) with AVMs treated from 1991 to 1998 and from 2000 to 2010.


A total of 80 patients with follow-up data after SRS were identified. Mean age at SRS was 12.7 years, and 56% of patients had hemorrhage at the time of presentation. Median target volume was 3.1 cm3 (range 0.09–62.3 cm3), and median prescription marginal dose used was 17.5 Gy (range 12–20 Gy). Angiograms acquired 3 years after treatment were available for 47% of patients; AVM obliteration was achieved in 52% of patients who received a dose of 18–20 Gy and in 16% who received less than 18 Gy. At 5 years after SRS, the cumulative incidence of hemorrhage was 25% (95% CI 16%–37%). No permanent neurological deficits occurred in patients who did not experience posttreatment hemorrhage. Overall, good functional outcomes (modified Rankin Scale Scores 0–2) were observed for 78% of patients; for 66% of patients, functional status improved or remained the same as before treatment.


A low marginal dose minimizes SRS-related neurological deficits but leads to low rates of obliteration and high rates of hemorrhage. To maximize AVM obliteration and minimize posttreatment hemorrhage, the authors recommend a prescription marginal dose of 18 Gy or more. In addition, SRS-related symptoms such as headache and seizures should be considered when discussing risks and benefits of SRS for treating AVMs in children.