Browse

You are looking at 1 - 2 of 2 items for

  • By Author: Lastra, Roberto x
Clear All
Restricted access

Pedro A. Gómez, Javier de-la-Cruz, David Lora, Luis Jiménez-Roldán, Gregorio Rodríguez-Boto, Rosario Sarabia, Juan Sahuquillo, Roberto Lastra, Jesus Morera, Eglis Lazo, Jaime Dominguez, Javier Ibañez, Marta Brell, Adolfo de-la-Lama, Ramiro D. Lobato and Alfonso Lagares

Object

Traumatic brain injury (TBI) represents a large health and economic burden. Because of the inability of previous randomized controlled trials (RCTs) on TBI to demonstrate the expected benefit of reducing unfavorable outcomes, the IMPACT (International Mission on Prognosis and Analysis of Clinical Trials in TBI) and CRASH (Corticosteroid Randomisation After Significant Head Injury) studies provided new methods for performing prognostic studies of TBI. This study aimed to develop and externally validate a prognostic model for early death (within 48 hours). The secondary aim was to identify patients who were more likely to succumb to an early death to limit their inclusion in RCTs and to improve the efficiency of RCTs.

Methods

The derivation cohort was recruited at 1 center, Hospital 12 de Octubre, Madrid (1990–2003, 925 patients). The validation cohort was recruited in 2004–2006 from 7 study centers (374 patients). The eligible patients had suffered closed severe TBIs. The study outcome was early death (within 48 hours post-TBI). The predictors were selected using logistic regression modeling with bootstrapping techniques, and a penalized reduction was used. A risk score was developed based on the regression coefficients of the variables included in the final model.

Results

In the validation set, the final model showed a predictive ability of 50% (Nagelkerke R2), with an area under the receiver operating characteristic curve of 89% and an acceptable calibration (goodness-of-fit test, p = 0.32). The final model included 7 variables, and it was used to develop a risk score with a range from 0 to 20 points. Age provided 0, 1, 2, or 3 points depending on the age group; motor score provided 0 points, 2 (untestable), or 3 (no response); pupillary reactivity, 0, 2 (1 pupil reacted), or 6 (no pupil reacted); shock, 0 (no) or 2 (yes); subarachnoid hemorrhage, 0 or 1 (severe deposit); cisternal status, 0 or 3 (compressed/absent); and epidural hematoma, 0 (yes) or 2 (no). Based on the risk of early death estimated with the model, 4 risk of early death groups were established: low risk, sum score 0–3 (< 1% predicted mortality); moderate risk, sum score 4–8 (predicted mortality between 1% and 10%); high risk, sum score 9–12 (probability of early death between 10% and 50%); and very high risk, sum score 13–20 (early mortality probability > 50%). This score could be used for selecting patients for clinical studies. For example, if patients with very high risk scores were excluded from our study sample, the patients included (eligibility score < 13) would represent 80% of the original sample and only 23% of the patients who died early.

Conclusions

The combination of Glasgow Coma Scale score, CT scanning results, and secondary insult data into a prognostic score improved the prediction of early death and the classification of TBI patients.

Restricted access

Maria A. Poca, Francisco Martínez-Ricarte, Juan Sahuquillo, Roberto Lastra, Ramón Torné and Maria S. Armengol

Object

Continuous intracranial pressure (ICP) monitoring using an epidural sensor is a common technique used in selected neurosurgical patients. The aim of this study was to assess the safety and accuracy of the Neurodur-P epidural sensor in the clinical setting.

Methods

The zero drift, as well as the medical and technical complications, of using the Neurodur-P sensor placed in the epidural space was evaluated in 106 patients with hydrocephalus of varying causes or with suspected intracranial hypertension.

Results

The median duration of ICP monitoring was 8 days (interquartile range [IQR] 6–12 days). In 78 (73.6%) of the 106 patients the pressure reading was recorded at sensor removal. No zero drift was observed in 28 sensors. The median drift was 0 mm Hg with an IQR of −1 to 1 mm Hg. No significant differences were found between patients monitored for ≤ 5 days and those monitored for > 5 days (t = 535, p = 0.100). No correlation was found between zero drift and monitoring time (r = 0.153, p = 0.181). Of the 83 patients with a follow-up computed tomography scan, 3 showed a < 1 ml collection of blood at the catheter tip. No clinical infections could be attributed to the devices. Only 1 sensor malfunctioned.

Conclusions

Continuous ICP monitoring using the Neurodur-P sensor is safe, reliable, and easy to perform. At present, using this device is the authors' standard method for the long-term monitoring of patients with alterations in complex cerebrospinal fluid dynamics or with implanted shunts.