Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Brandon Rocque x
  • By Author: Lam, Sandi x
Clear All Modify Search
Restricted access

Brandon G. Rocque, Kaushik Amancherla, Sean M. Lew and Sandi Lam

Cranioplasty is routinely performed following decompressive craniectomy in both adult and pediatric populations. In adults, this procedure is associated with higher rates of complications than is elective cranial surgery. This study is a review of the literature describing risk factors for complications after cranioplasty surgery in pediatric patients. A systematic search of PubMed, Cochrane, and SCOPUS databases was undertaken. Articles were selected based on their titles and abstracts. Only studies that focused on a pediatric population were included; case reports were excluded. Studies in which the authors assessed bone flap storage method, timing of cranioplasty, material used (synthetic vs autogenous), skull defect size, and/or complication rates (bone resorption and surgical site infection) were selected for further analysis. Eleven studies that included a total of 441 cranioplasties performed in the pediatric population are included in this review.

The findings are as follows: 1) Based on analysis of pooled data, using cryopreserved bone flaps during cranioplasty may lead to a higher rate of bone resorption and lower rate of infection than using bone flaps stored at room temperature. 2) In 3 of 4 articles describing the effect of time between craniectomy and cranioplasty on complication rate, the authors found no significant effect, while in 1 the authors found that the incidence of bone resorption was significantly lower in children who had undergone early cranioplasty. Pooling of data was not possible for this analysis. 3) There are insufficient data to assess the effect of cranioplasty material on complication rate when considering only cranioplasties performed to repair decompressive craniectomy defects. However, when considering cranioplasties performed for any indication, those in which freshly harvested autograft is used may have a lower rate of resorption than those in which stored autograft is used. 4) There is no appreciable effect of craniectomy defect size or patient age on complication rate.

There is a paucity of articles describing outcomes and complications following cranioplasty in children and adolescents. However, based on the studies examined in this systematic review, there are reasons to suspect that method of flap preservation, timing of surgery, and material used may be significant. Larger prospective and retrospective studies are needed to shed more light on this important issue.

Restricted access

Sandi Lam, Dominic Harris, Brandon G. Rocque and Sandra A. Ham


Endoscopic third ventriculostomy (ETV) is an alternative to ventriculoperitoneal shunting for hydrocephalus treatment. Choice of treatment options raises questions about which patients are likely to benefit from ETV. The authors performed a population-based analysis using an administrative claims database, examining current practice and outcomes for pediatric patients in the US.


The authors queried the MarketScan (Truven Health Analytics) database for Current Procedural Terminology codes corresponding to ETV and ventriculoperitoneal shunting from 2003 to 2011; they included patients 19 years or younger and extracted data from initial and subsequent hospitalizations. Hydrocephalus etiology was classified with ICD-9-CM coding. ETV failure was defined as any subsequent ETV or shunt procedure.


Five hundred one patients underwent ETV. Of these, 46% were female. The mean age was 8.7 ± 6.4 years (± SD). The mean follow-up was 1.9 ± 1.8 years. Etiology of hydrocephalus was primarily tumor (41.7%) and congenital/aqueductal stenosis (24.4%). ETV was successful in 354 patients (71%). The mean time to failure was 109.9 ± 233 days. Of the 147 patients with ETV failure, 35 (24%) underwent repeat ETV and 112 (76%) had shunt placement. Patients in age groups 0 to < 6 months and 6 months to < 1 year had a significantly higher rate of ETV failure than those 10–19 years (HR 2.9, p = 0.05; and HR 2.3, p = 0.001, respectively). History of prior shunt was associated with higher risk of failure (HR 2.5, p < 0.001). There were no significant associations between hydrocephalus etiology and risk of failure. A second wave of failures occurred at 2.5–3.5 years postoperative in tumor and congenital/aqueductal stenosis patients; this was not observed in other etiology groups.


This study represents a cross-section of nationwide ETV practice over 9 years. ETV success was more likely among children 1 year and older and those with no history of prior shunt.