Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Anthony M. Kaufmann x
  • By Author: Kondziolka, Douglas x
Clear All Modify Search
Restricted access

Hideyuki Kano, Douglas Kondziolka, David Mathieu, Scott L. Stafford, Thomas J. Flannery, Ajay Niranjan, Bruce E. Pollock, Anthony M. Kaufmann, John C. Flickinger and L. Dade Lunsford

Object

The aim of this study was to evaluate the outcomes of Gamma Knife surgery (GKS) when used for patients with intractable cluster headache (CH).

Methods

Four participating centers of the North American Gamma Knife Consortium identified 17 patients who underwent GKS for intractable CH between 1996 and 2008. The median patient age was 47 years (range 26–83 years). The median duration of pain before GKS was 10 years (range 1.3–40 years). Seven patients underwent unsuccessful prior surgical procedures, including microvascular decompression (2 patients), microvascular decompression with glycerol rhizotomy (2 patients), deep brain stimulation (1 patient), trigeminal ganglion stimulation (1 patient), and prior GKS (1 patient). Fourteen patients had associated autonomic symptoms. The radiosurgical target was the trigeminal nerve (TN) root and the sphenopalatine ganglion (SPG) in 8 patients, only the TN in 8 patients, and only the SPG in 1 patient. The median maximum TN and SPG dose was 80 Gy.

Results

Favorable pain relief (Barrow Neurological Institute Grades I–IIIb) was achieved and maintained in 10 (59%) of 17 patients at a median follow-up of 34 months. Three patients required additional procedures (repeat GKS in 2 patients, hypothalamic deep brain stimulation in 1 patient). Eight (50%) of 16 patients who had their TN irradiated developed facial sensory dysfunction after GKS.

Conclusions

Gamma Knife surgery for intractable, medically refractory CH provided lasting pain reduction in approximately 60% of patients, but was associated with a significantly greater chance of facial sensory disturbances than GKS used for trigeminal neuralgia.

Restricted access

Jason P. Sheehan, Shota Tanaka, Michael J. Link, Bruce E. Pollock, Douglas Kondziolka, David Mathieu, Christopher Duma, A. Byron Young, Anthony M. Kaufmann, Heyoung McBride, Peter A. Weisskopf, Zhiyuan Xu, Hideyuki Kano, Huai-che Yang and L. Dade Lunsford

Object

Glomus tumors are rare skull base neoplasms that frequently involve critical cerebrovascular structures and lower cranial nerves. Complete resection is often difficult and may increase cranial nerve deficits. Stereotactic radiosurgery has gained an increasing role in the management of glomus tumors. The authors of this study examine the outcomes after radiosurgery in a large, multicenter patient population.

Methods

Under the auspices of the North American Gamma Knife Consortium, 8 Gamma Knife surgery centers that treat glomus tumors combined their outcome data retrospectively. One hundred thirty-four patient procedures were included in the study (134 procedures in 132 patients, with each procedure being analyzed separately). Prior resection was performed in 51 patients, and prior fractionated external beam radiotherapy was performed in 6 patients. The patients' median age at the time of radiosurgery was 59 years. Forty percent had pulsatile tinnitus at the time of radiosurgery. The median dose to the tumor margin was 15 Gy. The median duration of follow-up was 50.5 months (range 5–220 months).

Results

Overall tumor control was achieved in 93% of patients at last follow-up; actuarial tumor control was 88% at 5 years postradiosurgery. Absence of trigeminal nerve dysfunction at the time of radiosurgery (p = 0.001) and higher number of isocenters (p = 0.005) were statistically associated with tumor progression–free tumor survival. Patients demonstrating new or progressive cranial nerve deficits were also likely to demonstrate tumor progression (p = 0.002). Pulsatile tinnitus improved in 49% of patients who reported it at presentation. New or progressive cranial nerve deficits were noted in 15% of patients; improvement in preexisting cranial nerve deficits was observed in 11% of patients. No patient died as a result of tumor progression.

Conclusions

Gamma Knife surgery was a well-tolerated management strategy that provided a high rate of long-term glomus tumor control. Symptomatic tinnitus improved in almost one-half of the patients. Overall neurological status and cranial nerve function were preserved or improved in the vast majority of patients after radiosurgery.

Full access

Jason P. Sheehan, Robert M. Starke, Hideyuki Kano, Anthony M. Kaufmann, David Mathieu, Fred A. Zeiler, Michael West, Samuel T. Chao, Gandhi Varma, Veronica L. S. Chiang, James B. Yu, Heyoung L. McBride, Peter Nakaji, Emad Youssef, Norissa Honea, Stephen Rush, Douglas Kondziolka, John Y. K. Lee, Robert L. Bailey, Sandeep Kunwar, Paula Petti and L. Dade Lunsford

Object

Parasellar and sellar meningiomas are challenging tumors owing in part to their proximity to important neurovascular and endocrine structures. Complete resection can be associated with significant morbidity, and incomplete resections are common. In this study, the authors evaluated the outcomes of parasellar and sellar meningiomas managed with Gamma Knife radiosurgery (GKRS) both as an adjunct to microsurgical removal or conventional radiation therapy and as a primary treatment modality.

Methods

A multicenter study of patients with benign sellar and parasellar meningiomas was conducted through the North American Gamma Knife Consortium. For the period spanning 1988 to 2011 at 10 centers, the authors identified all patients with sellar and/or parasellar meningiomas treated with GKRS. Patients were also required to have a minimum of 6 months of imaging and clinical follow-up after GKRS. Factors predictive of new neurological deficits following GKRS were assessed via univariate and multivariate analyses. Kaplan-Meier analysis and Cox multivariate regression analysis were used to assess factors predictive of tumor progression.

Results

The authors identified 763 patients with sellar and/or parasellar meningiomas treated with GKRS. Patients were assessed clinically and with neuroimaging at routine intervals following GKRS. There were 567 females (74.3%) and 196 males (25.7%) with a median age of 56 years (range 8–90 years). Three hundred fifty-five patients (50.7%) had undergone at least one resection before GKRS, and 3.8% had undergone prior radiation therapy. The median follow-up after GKRS was 66.7 months (range 6–216 months). At the last follow-up, tumor volumes remained stable or decreased in 90.2% of patients. Actuarial progression-free survival rates at 3, 5, 8, and 10 years were 98%, 95%, 88%, and 82%, respectively. More than one prior surgery, prior radiation therapy, or a tumor margin dose < 13 Gy significantly increased the likelihood of tumor progression after GKRS.

At the last clinical follow-up, 86.2% of patients demonstrated no change or improvement in their neurological condition, whereas 13.8% of patients experienced symptom progression. New or worsening cranial nerve deficits were seen in 9.6% of patients, with cranial nerve (CN) V being the most adversely affected nerve. Functional improvements in CNs, especially in CNs V and VI, were observed in 34% of patients with preexisting deficits. New or worsened endocrinopathies were demonstrated in 1.6% of patients; hypothyroidism was the most frequent deficiency. Unfavorable outcome with tumor growth and accompanying neurological decline was statistically more likely in patients with larger tumor volumes (p = 0.022) and more than 1 prior surgery (p = 0.021).

Conclusions

Gamma Knife radiosurgery provides a high rate of tumor control for patients with parasellar or sellar meningiomas, and tumor control is accompanied by neurological preservation or improvement in most patients.