Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Volker Seifert x
  • By Author: Kodama, Kunihiko x
Clear All Modify Search
Restricted access

Kunihiko Kodama, Mani Javadi, Volker Seifert and Andrea Szelényi


During the surgical removal of infratentorial lesions, intraoperative neuromonitoring is mostly focused on cranial nerve assessment and brainstem auditory potentials. Despite the known risk of perforating vessel injury during microdissection within the vicinity of the brainstem, there are few reports about intraoperative neuromonitoring with somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) assessing the medial lemniscus and corticospinal tract. This study analyses the occurrence of intraoperative changes in MEPs and SEPs with regard to lesion location and postoperative neurological outcome.


The authors analyzed 210 cases in which patients (mean age 49 ± 13 years, 109 female) underwent surgeries involving the skull base (n = 104), cerebellum (n = 63), fourth ventricle (n = 28), brainstem (n = 12), and foramen magnum (n = 3).


Of 210 surgeries, 171 (81.4%) were uneventful with respect to long-tract monitoring. Nine (23%) of the 39 SEP and/or MEP alterations were transient and were only followed by a slight permanent deficit in 1 case. Permanent deterioration only was seen in 19 (49%) of 39 cases; the deterioration was related to tumor dissection in 4 of these cases, and permanent deficit (moderate-severe) was seen in only 1 of these 4 cases. Eleven patients (28%) had losses of at least 1 modality, and in 9 of these 11 cases, the loss was related to surgical microdissection within the vicinity of the brainstem. Four of these 9 patients suffered a moderate-to-severe long-term deficit. For permanent changes, the positive predictive value for neuromonitoring of the long tracts was 0.467, the negative predictive value was 0.989, the sensitivity was 0.875, and the specificity 0.918. Twenty-eight (72%) of 39 SEP and MEP alterations occurred in 66 cases involving intrinsic brainstem tumors or tumors adjacent to the brainstem. Lesion location and alterations in intraoperative neuromonitoring significantly correlated with patients' outcome (p < 0.001, chi-square test).


In summary, long-tract monitoring with SEPs and MEPs in infratentorial surgeries has a high sensitivity and negative predictive value with respect to postoperative neurological status. It is recommended especially in those surgeries in which microdissection within and in the vicinity of the brainstem might lead to injury of the brainstem parenchyma or perforating vessels and a subsequent perfusion deficit within the brainstem.

Full access

Philipp J. Slotty, Amr Abdulazim, Kunihiko Kodama, Mani Javadi, Daniel Hänggi, Volker Seifert and Andrea Szelényi


Methods of choice for neurophysiological intraoperative monitoring (IOM) within the infratentorial compartment mostly include early brainstem auditory evoked potentials, free-running electromyography, and direct cranial nerve (CN) stimulation. Long-tract monitoring with somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) is rarely used. This study investigated the incidence of IOM alterations during posterior fossa surgery stratified for lesion location.


Standardized CN and SEP/MEP IOM was performed in 305 patients being treated for various posterior fossa pathologies. The IOM data were correlated with lesion locations and histopathological types as well as other possible confounding factors.


Alterations in IOM were observed in 158 of 305 cases (51.8%) (CN IOM alterations in 130 of 305 [42.6%], SEP/MEP IOM alterations in 43 of 305 [14.0%]). In 15 cases (4.9%), simultaneous changes in long tracts and CNs were observed. The IOM alterations were followed by neurological sequelae in 98 of 305 cases (32.1%); 62% of IOM alterations resulted in neurological deficits. Sensitivity and specificity for detection of CN deficits were 98% and 77%, respectively, and 95% and 85%, respectively, for long-tract deficits. Regarding location, brainstem and petroclival lesions were closely associated with concurrent CN IOM and SEP/MEP alterations.


The incidence of IOM alterations during surgery in the posterior fossa varied widely between different lesion locations and histopathological types. This analysis provides crucial information on the necessity of IOM in different surgical settings. Because MEP/SEP and CN IOM alterations were commonly observed during posterior fossa surgery, the authors recommend the simultaneous use of both modalities based on lesion location.