Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Thoralf M. Sundt Jr x
  • By Author: Kim, Phyo x
Clear All Modify Search
Restricted access

Phyo Kim, Thoralf M. Sundt Jr. and Paul M. Vanhoutte

✓ To investigate the alteration of endothelium-dependent responses in chronic vasospasm after subarachnoid hemorrhage (SAH), experiments were carried out in the double-hemorrhage canine model. After the presence of vasospasm was confirmed by cerebral angiography on Days 0 and 7, pharmacological studies on the basilar artery were conducted in vitro on Day 8. In the SAH group, endothelium-dependent relaxation was abolished in response to arginine vasopressin and was significantly reduced in response to thrombin. Endothelium-independent relaxation in the SAH group was preserved in response to papaverine and was minimally reduced in response to sodium nitroprusside. Endothelium-dependent contraction in response to arachidonic acid, acetylcholine, the calcium ionophore A23187, adenosine diphosphate, mechanical stretching, and hypoxia persisted in the SAH group. The maximal contraction to KCl and uridine triphosphate, which is endothelium-independent, was diminished in the SAH group, but no changes in sensitivity were noted in the concentration-response relationships. A significant correlation was observed between the degree of vasospasm determined angiographically and the loss of endothelium-dependent relaxation. The loss of endothelium-dependent relaxation and the persistence of endothelium-dependent contraction suggest that the deterioration in the endothelium-dependent responses may be an important component in the pathogenesis of cerebral vasospasm.

Restricted access

Phyo Kim, Thoralf M. Sundt Jr. and Paul M. Vanhoutte

✓ The purpose of this study was to examine the hypotheses that structural stiffening of the arterial wall contributes to chronic cerebral vasospasm, and that alteration in properties of smooth muscle takes place after subarachnoid hemorrhage (SAH). Subarachnoid hemorrhage and subsequent chronic vasospasm were induced in dogs by two cisternal injections of autologous blood (on Day 0 and Day 2). Vasospasm was confirmed by angiography performed on Day 0 and Day 7. Animals in the control group underwent angiography only. On Day 8, the mechanical properties of the basilar arteries were studied in vitro. Passive compliance, measured under total inhibition of spontaneous myogenic tone with diltiazem (10−4 M) plus papaverine (10−4 M) was smaller in the SAH group. The length-contraction curve was shifted to the left and the optimum length for maximum contraction (Lmax) was significantly shorter in the spastic blood vessels. The spontaneous myogenic tone was augmented in the SAH group, resulting in an increase in resting tension at each length. By contrast, the maximum contractions in response to KCl and uridine 5′-triphosphate were markedly reduced in the SAH group, without changes in sensitivity to these agents. These differences in mechanical properties were observed in rings both with and without endothelium. The results indicate that, in chronic vasospasm, stiffening of the noncontractile component of the vasculature takes place as well as alterations in the contractile component, both of which presumably contribute to the shift in resting length-tension relationship and length-contraction relationship of the artery. The decreased distensibility, the increase in resting tension, and the shortening of the Lmax all favor a smaller diameter of the artery after SAH, possibly contributing to vasospasm.

Restricted access

Phyo Kim, James D. Jones and Thoralf M. Sundt Jr.

✓ High-energy phosphate levels were measured in the canine cerebral artery during chronic vasospasm. Subarachnoid hemorrhage and vasospasm were induced by percutaneous injections of autologous venous blood into the cisterna magna. Narrowing of the artery was confirmed by angiography 7 days later. Levels of adenosine phosphates (adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP)), guanosine phosphates (guanosine triphosphate (GTP) and guanosine diphosphate (GDP)), and creatine phosphate (CrP) in the basilar artery were quantified using high-performance liquid chromatography. The total creatine (Crtotal) content was measured by a spectrophotometric method after acid hydrolysis of CrP. Levels of ATP, GTP, and CrP were markedly reduced in the spastic arteries, and ratios of ATP:ADP, GTP:GDP, and CrP:Crtotal were significantly decreased. The results indicate a serious disturbance in the energy metabolism that takes place in the cerebral artery during chronic vasospasm.

Restricted access

Phyo Kim, Robert R. Lorenz, Thoralf M. Sundt Jr. and Paul M. Vanhoutte

✓ The purpose of this study was to determine the cause of the loss of endothelium-dependent relaxation observed in chronic cerebral vasospasm. A bioassay system was developed to measure the release of endothelium-derived relaxing factor (EDRF) from canine basilar arteries. Subarachnoid hemorrhage (SAH) was induced in dogs by two injections of autologous blood into the cisterna magna. Angiograms were performed on the 7th day after SAH to check the presence of chronic vasospasm. The animals were sacrificed on the 8th day, and in vitro experiments were performed on rings harvested from the basilar artery. These confirmed loss of endothelium-dependent relaxation in response to bradykinin and arginine vasopressin in the group with SAH. The basilar arteries were perfused with modified Krebs-Ringer solution. The perfusate was bioassayed with a ring of coronary artery without endothelium (bioassay ring). The release of the EDRF was detected by relaxation of the bioassay ring contracted with prostaglandin F2α. Arginine vasopressin and bradykinin added to the perfusate upstream of the basilar artery caused concentration-dependent release of the EDRF. The direct effect of these peptides on the smooth muscle of the bioassay ring was to cause contraction. The release of the EDRF was identical in basilar arteries from the control and the SAH groups. These results indicate that the release of the EDRF is not impaired during chronic vasospasm, and thus that the loss of the endothelium-dependent relaxation is due to a decreased transfer of the EDRF or a reduced responsiveness of the smooth muscle to the factor.