Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: John A. Butman x
  • By Author: Kim, H. Jeffrey x
Clear All Modify Search
Restricted access

John A. Butman, Edjah Nduom, H. Jeffrey Kim and Russell R. Lonser

Object

To determine if physiologically based MRI sequences can be used to detect endolymphatic sac tumor (ELST)–associated hydrops, the authors performed contrast-enhanced delayed FLAIR imaging in consecutive ELST patients with clinical findings consistent with hydrops.

Methods

Consecutive patients with von Hippel-Lindau (VHL) disease and clinical findings of endolymphatic hydrops and ELSTs underwent contrast-enhanced delayed FLAIR MRI. Clinical, audiological, operative, and imaging findings were analyzed.

Results

Three patients (2 male, 1 female) with 4 ELSTs (1 patient had bilateral ELSTs) were identified who had clinical findings consistent with endolymphatic hydrops. Computed tomography and MRI evidence of an ELST was found in all patients. Their mean age at initial evaluation was 39.7 years (range 28–51 years). All patients demonstrated progressive sensorineural hearing loss that was associated with episodic vertigo and tinnitus. Contrast-enhanced delayed FLAIR MRI clearly demonstrated dilation of the membranous labyrinth consistent with hydrops in the affected ears but not the unaffected ears. Two patients underwent resection of the associated ELST that resulted in stabilization of progressive hearing loss, as well as amelioration of tinnitus and vertigo.

Conclusions

Contrast-enhanced delayed FLAIR MRI can be used to detect ELST-associated hydrops. Noninvasive MRI detection of hydrops can permit earlier detection of ELSTs in patients with VHL disease and provides direct insight into a mechanism that underlies ELST-associated audiovestibular morbidity.

Restricted access

Russell R. Lonser, Martin Baggenstos, H. Jeffrey Kim, John A. Butman and Alexander O. Vortmeyer

Object

Although endolymphatic sac tumors (ELSTs) frequently destroy the posterior petrous bone and cause hearing loss, the anatomical origin of these neoplasms is unknown. To determine the precise topographic origin of ELSTs, the authors analyzed the imaging, operative, and pathological findings in patients with von Hippel–Lindau disease (VHL) and ELSTs.

Methods

Consecutive VHL patients with small (≤ 1.5 cm) ELSTs who underwent resection at the National Institutes of Health were included. Clinical, imaging, operative, and pathological findings were analyzed.

Results

Ten consecutive VHL patients (6 male and 4 female) with 10 small ELSTs (≤ 1.5 cm; 9 left, 1 right) were included. Serial imaging captured the development of 6 ELSTs and revealed that they originated within the intraosseous (vestibular aqueduct) portion of the endolymphatic duct/sac system. Imaging just before surgery demonstrated that the epicenters of 9 ELSTs (1 ELST was not visible on preoperative imaging) were in the vestibular aqueduct. Inspection during surgery established that all 10 ELSTs were limited to the intraosseous endolymphatic duct/sac and the immediately surrounding region. Histological analysis confirmed tumor within the intraosseous portion (vestibular aqueduct) of the endolymphatic duct/sac in all 10 patients.

Conclusions

ELSTs originate from endolymphatic epithelium within the vestibular aqueduct. High-resolution imaging through the region of the vestibular aqueduct is essential for diagnosis. Surgical exploration of the endolymphatic duct and sac is required for complete resection.

Restricted access

Michael S. Dirks, John A. Butman, H. Jeffrey Kim, Tianxia Wu, Keaton Morgan, Anne P. Tran, Russell R. Lonser and Ashok R. Asthagiri

Object

Neurofibromatosis Type 2 (NF2) is a heritable tumor predisposition syndrome that leads to the development of multiple intracranial tumors, including meningiomas and schwannomas. Because the natural history of these tumors has not been determined, their optimal management has not been established. To define the natural history of NF2-associated intracranial tumors and to optimize management strategies, the authors evaluated long-term clinical and radiographic data in patients with NF2.

Methods

Consecutive NF2 patients with a minimum of 4 years of serial clinical and MRI follow-up were analyzed.

Results

Seventeen patients, 9 males and 8 females, were included in this analysis (mean follow-up 9.5 ± 4.8 years, range 4.0–20.7 years). The mean age at initial evaluation was 33.2 ± 15.5 years (range 12.3–57.6 years). Patients harbored 182 intracranial neoplasms, 164 of which were assessable for growth rate analysis (18 vestibular schwannomas [VSs], 11 nonvestibular cranial nerve [CN] schwannomas, and 135 meningiomas) and 152 of which were assessable for growth pattern analysis (15 VSs, 9 nonvestibular CN schwannomas, and 128 meningiomas). New tumors developed in patients over the course of the imaging follow-up: 66 meningiomas, 2 VSs, and 2 nonvestibular CN schwannomas. Overall, 45 tumors (29.6%) exhibited linear growth, 17 tumors (11.2%) exhibited exponential growth, and 90 tumors (59.2%) displayed a saltatory growth pattern characterized by alternating periods of growth and quiescence (mean quiescent period 2.3 ± 2.1 years, range 0.4–11.7 years). Further, the saltatory pattern was the most frequently identified growth pattern for each tumor type: meningiomas 60.9%, VSs 46.7%, and nonvestibular schwannoma 55.6%. A younger age at the onset of NF2-related symptoms (p = 0.01) and female sex (p = 0.05) were associated with an increased growth rate in meningiomas. The identification of saltatory growth in meningiomas increased with the duration of follow-up (p = 0.01).

Conclusions

Neurofibromatosis Type 2–associated intracranial tumors most frequently demonstrated a saltatory growth pattern. Because new tumors can develop in NF2 patients over their lifetime and because radiographic progression and symptom formation are unpredictable, resection may be best reserved for symptom-producing tumors. Moreover, establishing the efficacy of nonsurgical therapeutic interventions must be based on long-term follow-up (several years).

Restricted access

H. Jeffrey Kim, John A. Butman, Carmen Brewer, Christopher Zalewski, Alexander O. Vortmeyer, Gladys Glenn, Edward H. Oldfield and Russell R. Lonser

Object. Endolymphatic sac tumors (ELSTs), which often are associated with von Hippel—Lindau (VHL) disease, cause irreversible hearing loss and vestibulopathy. Clinical and imaging surveillance protocols provide new insights into the natural history, mechanisms of symptom formation, and indications for the treatment of ELSTs. To clarify the uncertainties associated with the pathophysiology and treatment of ELSTs, the authors describe a series of patients with VHL disease in whom serial examinations recorded the development of ELSTs.

Methods. Patients with VHL disease were included if serial clinical and imaging studies captured the development of ELSTs, and the patients underwent tumor resection. The patients' clinical, audiological, and imaging characteristics as well as their operative results were analyzed.

Five consecutive patients (three men and two women) with a mean age at surgery of 34.8 years and a follow-up period of 6 to 18 months were included in this study. Audiovestibular symptoms were present in three patients before a tumor was evident on neuroimaging. Imaging evidence of an intralabyrinthine hemorrhage coincided with a loss of hearing in three patients. Successful resection of the ELSTs was accomplished by performing a retrolabyrinthine posterior petrosectomy (RLPP). Hearing stabilized and vestibular symptoms resolved after surgery in all patients. No patient has experienced a recurrence.

Conclusions. Audiovestibular symptoms, including hearing loss, in patients with VHL disease can be the result of microscopic ELSTs. Once an ELST has been detected, it can be completely resected via an RLPP with preservation of hearing and amelioration of vestibular symptoms. Early detection and surgical treatment of small ELSTs, when hearing is still present, should reduce the incidence and severity of hearing loss, tinnitus, vertigo, and cranial nerve dysfunction, which are associated with these tumors.

Restricted access

Jay Jagannathan, John A. Butman, Russell R. Lonser, Alexander O. Vortmeyer, Christopher K. Zalewski, Carmen Brewer, Edward H. Oldfield and H. Jeffrey Kim

✓ Endolymphatic sac tumors (ELSTs) are locally invasive neoplasms that arise in the posterior petrous bone and are associated with von Hippel–Lindau (VHL) disease. These tumors cause symptoms even when microscopic in size (below the threshold for detectability on imaging studies) and can lead to symptoms such as hearing loss, tinnitus, vertigo, and facial nerve dysfunction. While the mechanisms of audiovestibular dysfunction in patients harboring ELSTs are incompletely understood, they have critical implications for management. The authors present the case of a 33-year-old man with VHL disease and a 10-year history of progressive tinnitus, vertigo, and left-sided hearing loss. Serial T1-weighted magnetic resonance (MR) imaging and computed tomography scans revealed no evidence of tumor, but fluid attenuated inversion recovery (FLAIR) MR imaging sequences obtained after hearing loss demonstrated evidence of left intralabyrinthine hemorrhage. On the basis of progressive disabling audiovestibular dysfunction (tinnitus and vertigo), FLAIR imaging findings, and VHL disease status, the patient underwent surgical exploration of the posterior petrous region, and a small (2-mm) ELST was identified and completely resected. Postoperatively, the patient had improvement of the tinnitus and vertigo. Intralabyrinthine hemorrhage may be an early and the only neuroimaging sign of an ELST in patients with VHL disease and audiovestibular dysfunction. These findings support tumor-associated hemorrhage as a mechanism underlying the audiovestibular dysfunction associated with ELSTs.

Full access

H. Jeffrey Kim, John A. Butman, Brewer Carmen, Christopher Zalewski, Alexander O. Vortmeyer, Gladys Glenn, Edward H. Oldfield and Russell R. Lonser

Object

Endolymphatic sac tumors (ELSTs), which often are associated with von Hippel–Lindau (VHL) disease, cause irreversible hearing loss and vestibulopathy. Clinical and imaging surveillance protocols provide new insights into the natural history, mechanisms of symptom formation, and indications for the treatment of ELSTs. To clarify the uncertainties associated with the pathophysiology and treatment of ELSTs, the authors describe a series of patients with VHL disease in whom serial examinations recorded the development of ELSTs.

Methods

Patients with VHL disease were included if serial clinical and imaging studies captured the development of ELSTs, and the patients underwent tumor resection. The patients' clinical, audiological, and imaging characteristics as well as their operative results were analyzed.

Five consecutive patients (three men and two women) with a mean age at surgery of 34.8 years and a follow-up period of 6 to 18 months were included in this study. Audiovestibular symptoms were present in three patients before a tumor was evident on neuroimaging. Imaging evidence of an intralabyrinthine hemorrhage coincided with a loss of hearing in three patients. Successful resection of the ELSTs was accomplished by performing a retrolabyrinthine posterior petrosectomy (RLPP). Hearing stabilized and vestibular symptoms resolved after surgery in all patients. No patient has experienced a recurrence.

Conclusions

Audiovestibular symptoms, including hearing loss, in patients with VHL disease can be the result of microscopic ELSTs. Once an ELST has been detected, it can be completely resected via an RLPP with preservation of hearing and amelioration of vestibular symptoms. Early detection and surgical treatment of small ELSTs, when hearing is still present, should reduce the incidence and severity of hearing loss, tinnitus, vertigo, and cranial nerve dysfunction, which are associated with these tumors.