Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Benjamin C. Kennedy x
  • Journal of Neurosurgery: Pediatrics x
  • By Author: Kennedy, Benjamin C. x
Clear All Modify Search
Full access

Benjamin C. Kennedy, Michael B. Cloney, Richard C. E. Anderson and Neil A. Feldstein

OBJECT

Choroid plexus papillomas (CPPs) are rare neoplasms, often found in the atrium of the lateral ventricle of infants, and cause overproduction hydrocephalus. The extensive vascularity and medially located blood supply of these tumors, coupled with the young age of the patients, can make prevention of blood loss challenging. Preoperative embolization has been advocated to reduce blood loss and prevent the need for transfusion, but this mandates radiation exposure and the additional risks of vessel injury and stroke. For these reasons, the authors present their experience using the superior parietal lobule approach to CPPs of the atrium without adjunct therapy.

METHODS

A retrospective review was conducted of all children who presented to Columbia University/Morgan Stanley Children's Hospital of New York with a CPP in the atrium of the lateral ventricle and who underwent surgery using a superior parietal lobule approach without preoperative embolization.

RESULTS

Nine children were included, with a median age of 7 months. There were no perioperative complications or new neurological deficits. All patients had intraoperative blood loss of less than 100 ml, with a mean minimum hematocrit of 26.9% (range 19.6%–36.2%). No patients required a blood transfusion. The median follow-up was 39 months, during which time no patient demonstrated residual or recurrent tumor on MRI, nor did any have an increase in ventricular size or require CSF diversion.

CONCLUSIONS

The superior parietal lobule approach is safe and effective for very young children with CPPs in the atrium of the lateral ventricle. The results suggest that preoperative embolization is not essential to avoid transfusion or achieve overall good outcomes in these patients. This management strategy avoids radiation exposure and the additional risks associated with embolization.

Free access

Benjamin C. Kennedy, Kathleen M. Kelly, Michelle Q. Phan, Samuel S. Bruce, Michael M. McDowell, Richard C. E. Anderson and Neil A. Feldstein

OBJECT

Symptomatic pediatric Chiari malformation Type I (CM-I) is most often treated with posterior fossa decompression (PFD), but controversy exists over whether the dura needs to be opened during PFD. While dural opening as a part of PFD has been suggested to result in a higher rate of resolution of CM symptoms, it has also been shown to lead to more frequent complications. In this paper, the authors present the largest reported series of outcomes after PFD without dural opening surgery, as well as identify risk factors for recurrence.

METHODS

The authors performed a retrospective review of 156 consecutive pediatric patients in whom the senior authors performed PFD without dural opening from 2003 to 2013. Patient demographics, clinical symptoms and signs, radiographic findings, intraoperative ultrasound results, and neuromonitoring findings were reviewed. Univariate and multivariate regression analyses were performed to determine risk factors for recurrence of symptoms and the need for reoperation.

RESULTS

Over 90% of patients had a good clinical outcome, with improvement or resolution of their symptoms at last follow-up (mean 32 months). There were no major complications. The mean length of hospital stay was 2.0 days. In a multivariate regression model, partial C-2 laminectomy was an independent risk factor associated with reoperation (p = 0.037). Motor weakness on presentation was also associated with reoperation but only with trend-level significance (p = 0.075). No patient with < 8 mm of tonsillar herniation required reoperation.

CONCLUSIONS

The vast majority (> 90%) of children with symptomatic CM-I will have improvement or resolution of symptoms after a PFD without dural opening. A non–dural opening approach avoids major complications. While no patient with tonsillar herniation < 8 mm required reoperation, children with tonsillar herniation at or below C-2 have a higher risk for failure when this approach is used.

Full access

Benjamin C. Kennedy, Taylor B. Nelp, Kathleen M. Kelly, Michelle Q. Phan, Samuel S. Bruce, Michael M. McDowell, Neil A. Feldstein and Richard C. E. Anderson

OBJECT

Chiari malformation Type I (CM-I) is associated with a syrinx in 25%–85% of patients. Although posterior fossa decompression (PFD) without dural opening is an accepted treatment option for children with symptomatic CM-I, many surgeons prefer to open the dura if a syrinx exists. The purpose of this study was to investigate the frequency and timing of syrinx resolution in children undergoing PFD without dural opening for CM-I.

METHODS

A retrospective review of 68 consecutive pediatric patients with CM-I and syringomyelia who underwent PFD without dural opening was conducted. Patient demographics, presenting symptoms and signs, radiographic findings, and intraoperative ultrasound and neuromonitoring findings were studied as well as the patients’ clinical and radiographic follow-up.

RESULTS

During the mean radiographic follow-up period of 32 months, 70% of the syringes improved. Syrinx improvement occurred at a mean of 31 months postoperatively. All patients experienced symptom improvement within the 1st year, despite only 26% of patients showing radiographic improvement during that period. Patients presenting with sensory symptoms or motor weakness had a higher likelihood of having radiographic syrinx improvement postoperatively.

CONCLUSIONS

In children with CM-I and a syrinx undergoing PFD without dural opening, syrinx resolution occurs in approximately 70% of patients. Radiographic improvement of the syrinx is delayed, but this does not correlate temporally with symptom improvement. Sensory symptoms or motor weakness on presentation are associated with syrinx resolution after surgery.

Full access

Benjamin C. Kennedy, Randy S. D’Amico, Brett E. Youngerman, Michael M. McDowell, Kristopher G. Hooten, Daniel Couture, Andrew Jea, Jeffrey Leonard, Sean M. Lew, David W. Pincus, Luis Rodriguez, Gerald F. Tuite, Michael L. Diluna, Douglas L. Brockmeyer, Richard C. E. Anderson and Pediatric Craniocervical Society

OBJECT

The long-term consequences of atlantoaxial (AA) and occipitocervical (OC) fusion and instrumentation in young children are unknown. Anecdotal reports have raised concerns regarding altered growth and alignment of the cervical spine after surgical intervention. The purpose of this study was to determine the long-term effects of these surgeries on the growth and alignment of the maturing spine.

METHODS

A multiinstitutional retrospective chart review was conducted for patients less than or equal to 6 years of age who underwent OC or AA fusion with rigid instrumentation at 9 participating centers. All patients had at least 3 years of clinical and radiographic follow-up data and radiographically confirmed fusion. Preoperative, immediate postoperative, and most recent follow-up radiographs and/or CT scans were evaluated to assess changes in spinal growth and alignment.

RESULTS

Forty children (9 who underwent AA fusion and 31 who underwent OC fusion) were included in the study (mean follow-up duration 56 months). The mean vertical growth over the fused levels in the AA fusion patients represented 30% of the growth of the cervical spine (range 10%–50%). Three different vertical growth patterns of the fusion construct developed among the 31 OC fusion patients during the follow-up period: 1) 16 patients had substantial growth (13%–46% of the total growth of the cervical spine); 2) 9 patients had no meaningful growth; and 3) 6 patients, most of whom presented with a distracted atlantooccipital dislocation, had a decrease in the height of the fused levels (range 7–23 mm). Regarding spinal alignment, 85% (34/40) of the patients had good alignment at follow-up, with straight or mildly lordotic cervical curvatures. In 1 AA fusion patient (11%) and 5 OC fusion patients (16%), we observed new hyperlordosis (range 43°–62°). There were no cases of new kyphosis or swan-neck deformity, evidence of subaxial instability, or unintended subaxial fusion. No preoperative predictors of these growth patterns or alignment were evident.

CONCLUSIONS

These results demonstrate that most young children undergoing AA and OC fusion with rigid internal fixation continue to have good cervical alignment and continued growth within the fused levels during a prolonged follow-up period. However, some variability in vertical growth and alignment exists, highlighting the need to continue close long-term follow-up.