Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Anthony M. Kaufmann x
  • By Author: Kano, Hideyuki x
Clear All Modify Search
Restricted access

Hideyuki Kano, Douglas Kondziolka, David Mathieu, Scott L. Stafford, Thomas J. Flannery, Ajay Niranjan, Bruce E. Pollock, Anthony M. Kaufmann, John C. Flickinger and L. Dade Lunsford

Object

The aim of this study was to evaluate the outcomes of Gamma Knife surgery (GKS) when used for patients with intractable cluster headache (CH).

Methods

Four participating centers of the North American Gamma Knife Consortium identified 17 patients who underwent GKS for intractable CH between 1996 and 2008. The median patient age was 47 years (range 26–83 years). The median duration of pain before GKS was 10 years (range 1.3–40 years). Seven patients underwent unsuccessful prior surgical procedures, including microvascular decompression (2 patients), microvascular decompression with glycerol rhizotomy (2 patients), deep brain stimulation (1 patient), trigeminal ganglion stimulation (1 patient), and prior GKS (1 patient). Fourteen patients had associated autonomic symptoms. The radiosurgical target was the trigeminal nerve (TN) root and the sphenopalatine ganglion (SPG) in 8 patients, only the TN in 8 patients, and only the SPG in 1 patient. The median maximum TN and SPG dose was 80 Gy.

Results

Favorable pain relief (Barrow Neurological Institute Grades I–IIIb) was achieved and maintained in 10 (59%) of 17 patients at a median follow-up of 34 months. Three patients required additional procedures (repeat GKS in 2 patients, hypothalamic deep brain stimulation in 1 patient). Eight (50%) of 16 patients who had their TN irradiated developed facial sensory dysfunction after GKS.

Conclusions

Gamma Knife surgery for intractable, medically refractory CH provided lasting pain reduction in approximately 60% of patients, but was associated with a significantly greater chance of facial sensory disturbances than GKS used for trigeminal neuralgia.

Restricted access

Jason P. Sheehan, Shota Tanaka, Michael J. Link, Bruce E. Pollock, Douglas Kondziolka, David Mathieu, Christopher Duma, A. Byron Young, Anthony M. Kaufmann, Heyoung McBride, Peter A. Weisskopf, Zhiyuan Xu, Hideyuki Kano, Huai-che Yang and L. Dade Lunsford

Object

Glomus tumors are rare skull base neoplasms that frequently involve critical cerebrovascular structures and lower cranial nerves. Complete resection is often difficult and may increase cranial nerve deficits. Stereotactic radiosurgery has gained an increasing role in the management of glomus tumors. The authors of this study examine the outcomes after radiosurgery in a large, multicenter patient population.

Methods

Under the auspices of the North American Gamma Knife Consortium, 8 Gamma Knife surgery centers that treat glomus tumors combined their outcome data retrospectively. One hundred thirty-four patient procedures were included in the study (134 procedures in 132 patients, with each procedure being analyzed separately). Prior resection was performed in 51 patients, and prior fractionated external beam radiotherapy was performed in 6 patients. The patients' median age at the time of radiosurgery was 59 years. Forty percent had pulsatile tinnitus at the time of radiosurgery. The median dose to the tumor margin was 15 Gy. The median duration of follow-up was 50.5 months (range 5–220 months).

Results

Overall tumor control was achieved in 93% of patients at last follow-up; actuarial tumor control was 88% at 5 years postradiosurgery. Absence of trigeminal nerve dysfunction at the time of radiosurgery (p = 0.001) and higher number of isocenters (p = 0.005) were statistically associated with tumor progression–free tumor survival. Patients demonstrating new or progressive cranial nerve deficits were also likely to demonstrate tumor progression (p = 0.002). Pulsatile tinnitus improved in 49% of patients who reported it at presentation. New or progressive cranial nerve deficits were noted in 15% of patients; improvement in preexisting cranial nerve deficits was observed in 11% of patients. No patient died as a result of tumor progression.

Conclusions

Gamma Knife surgery was a well-tolerated management strategy that provided a high rate of long-term glomus tumor control. Symptomatic tinnitus improved in almost one-half of the patients. Overall neurological status and cranial nerve function were preserved or improved in the vast majority of patients after radiosurgery.

Full access

Zachary J. Tempel, Srinivas Chivukula, Edward A. Monaco III, Greg Bowden, Hideyuki Kano, Ajay Niranjan, Edward F. Chang, Penny K. Sneed, Anthony M. Kaufmann, Jason Sheehan, David Mathieu and L. Dade Lunsford

OBJECT

Gamma Knife radiosurgery (GKRS) is the least invasive treatment option for medically refractory, intractable trigeminal neuralgia (TN) and is especially valuable for treating elderly, infirm patients or those on anticoagulation therapy. The authors reviewed pain outcomes and complications in TN patients who required 3 radiosurgical procedures for recurrent or persistent pain.

METHODS

A retrospective review of all patients who underwent 3 GKRS procedures for TN at 4 participating centers of the North American Gamma Knife Consortium from 1995 to 2012 was performed. The Barrow Neurological Institute (BNI) pain score was used to evaluate pain outcomes.

RESULTS

Seventeen patients were identified; 7 were male and 10 were female. The mean age at the time of last GKRS was 79.6 years (range 51.2–95.6 years). The TN was Type I in 16 patients and Type II in 1 patient. No patient suffered from multiple sclerosis. Eight patients (47.1%) reported initial complete pain relief (BNI Score I) following their third GKRS and 8 others (47.1%) experienced at least partial relief (BNI Scores II–IIIb). The average time to initial response was 2.9 months following the third GKRS. Although 3 patients (17.6%) developed new facial sensory dysfunction following primary GKRS and 2 patients (11.8%) experienced new or worsening sensory disturbance following the second GKRS, no patient sustained additional sensory disturbances after the third procedure. At a mean follow-up of 22.9 months following the third GKRS, 6 patients (35.3%) reported continued Score I complete pain relief, while 7 others (41.2%) reported pain improvement (BNI Scores II–IIIb). Four patients (23.5%) suffered recurrent TN following the third procedure at a mean interval of 19.1 months.

CONCLUSIONS

A third GKRS resulted in pain reduction with a low risk of additional complications in most patients with medically refractory and recurrent, intractable TN. In patients unsuitable for other microsurgical or percutaneous strategies, especially those receiving long-term oral anticoagulation or antiplatelet agents, GKRS repeated for a third time was a satisfactory, low risk option.

Full access

Jason P. Sheehan, Robert M. Starke, Hideyuki Kano, Anthony M. Kaufmann, David Mathieu, Fred A. Zeiler, Michael West, Samuel T. Chao, Gandhi Varma, Veronica L. S. Chiang, James B. Yu, Heyoung L. McBride, Peter Nakaji, Emad Youssef, Norissa Honea, Stephen Rush, Douglas Kondziolka, John Y. K. Lee, Robert L. Bailey, Sandeep Kunwar, Paula Petti and L. Dade Lunsford

Object

Parasellar and sellar meningiomas are challenging tumors owing in part to their proximity to important neurovascular and endocrine structures. Complete resection can be associated with significant morbidity, and incomplete resections are common. In this study, the authors evaluated the outcomes of parasellar and sellar meningiomas managed with Gamma Knife radiosurgery (GKRS) both as an adjunct to microsurgical removal or conventional radiation therapy and as a primary treatment modality.

Methods

A multicenter study of patients with benign sellar and parasellar meningiomas was conducted through the North American Gamma Knife Consortium. For the period spanning 1988 to 2011 at 10 centers, the authors identified all patients with sellar and/or parasellar meningiomas treated with GKRS. Patients were also required to have a minimum of 6 months of imaging and clinical follow-up after GKRS. Factors predictive of new neurological deficits following GKRS were assessed via univariate and multivariate analyses. Kaplan-Meier analysis and Cox multivariate regression analysis were used to assess factors predictive of tumor progression.

Results

The authors identified 763 patients with sellar and/or parasellar meningiomas treated with GKRS. Patients were assessed clinically and with neuroimaging at routine intervals following GKRS. There were 567 females (74.3%) and 196 males (25.7%) with a median age of 56 years (range 8–90 years). Three hundred fifty-five patients (50.7%) had undergone at least one resection before GKRS, and 3.8% had undergone prior radiation therapy. The median follow-up after GKRS was 66.7 months (range 6–216 months). At the last follow-up, tumor volumes remained stable or decreased in 90.2% of patients. Actuarial progression-free survival rates at 3, 5, 8, and 10 years were 98%, 95%, 88%, and 82%, respectively. More than one prior surgery, prior radiation therapy, or a tumor margin dose < 13 Gy significantly increased the likelihood of tumor progression after GKRS.

At the last clinical follow-up, 86.2% of patients demonstrated no change or improvement in their neurological condition, whereas 13.8% of patients experienced symptom progression. New or worsening cranial nerve deficits were seen in 9.6% of patients, with cranial nerve (CN) V being the most adversely affected nerve. Functional improvements in CNs, especially in CNs V and VI, were observed in 34% of patients with preexisting deficits. New or worsened endocrinopathies were demonstrated in 1.6% of patients; hypothyroidism was the most frequent deficiency. Unfavorable outcome with tumor growth and accompanying neurological decline was statistically more likely in patients with larger tumor volumes (p = 0.022) and more than 1 prior surgery (p = 0.021).

Conclusions

Gamma Knife radiosurgery provides a high rate of tumor control for patients with parasellar or sellar meningiomas, and tumor control is accompanied by neurological preservation or improvement in most patients.

Restricted access

Robert M. Starke, David J. McCarthy, Ching-Jen Chen, Hideyuki Kano, Brendan McShane, John Lee, David Mathieu, Lucas T. Vasas, Anthony M. Kaufmann, Wei Gang Wang, Inga S. Grills, Mohana Rao Patibandla, Christopher P. Cifarelli, Gabriella Paisan, John A. Vargo, Tomas Chytka, Ladislava Janouskova, Caleb E. Feliciano, Rafael Rodriguez-Mercado, Daniel A. Tonetti, L. Dade Lunsford and Jason P. Sheehan

OBJECTIVE

In this multicenter study, the authors reviewed the results obtained in patients who underwent Gamma Knife radiosurgery (GKRS) for dural arteriovenous fistulas (dAVFs) and determined predictors of outcome.

METHODS

Data from a cohort of 114 patients who underwent GKRS for cerebral dAVFs were compiled from the International Gamma Knife Research Foundation. Favorable outcome was defined as dAVF obliteration and no posttreatment hemorrhage or permanent symptomatic radiation-induced complications. Patient and dAVF characteristics were assessed to determine predictors of outcome in a multivariate logistic regression analysis; dAVF-free obliteration was calculated in a competing-risk survival analysis; and Youden indices were used to determine optimal radiosurgical dose.

RESULTS

A mean margin dose of 21.8 Gy was delivered. The mean follow-up duration was 4 years (range 0.5–18 years). The overall obliteration rate was 68.4%. The postradiosurgery actuarial rates of obliteration at 3, 5, 7, and 10 years were 41.3%, 61.1%, 70.1%, and 82.0%, respectively. Post-GRKS hemorrhage occurred in 4 patients (annual risk of 0.9%). Radiation-induced imaging changes occurred in 10.4% of patients; 5.2% were symptomatic, and 3.5% had permanent deficits. Favorable outcome was achieved in 63.2% of patients. Patients with middle fossa and tentorial dAVFs (OR 2.4, p = 0.048) and those receiving a margin dose greater than 23 Gy (OR 2.6, p = 0.030) were less likely to achieve a favorable outcome. Commonly used grading scales (e.g., Borden and Cognard) were not predictive of outcome. Female sex (OR 1.7, p = 0.03), absent venous ectasia (OR 3.4, p < 0.001), and cavernous carotid location (OR 2.1, p = 0.019) were predictors of GKRS-induced dAVF obliteration.

CONCLUSIONS

GKRS for cerebral dAVFs achieved obliteration and avoided permanent complications in the majority of patients. Those with cavernous carotid location and no venous ectasia were more likely to have fistula obliteration following radiosurgery. Commonly used grading scales were not reliable predictors of outcome following radiosurgery.

Restricted access

Robert M. Starke, David J. McCarthy, Ching-Jen Chen, Hideyuki Kano, Brendan J. McShane, John Lee, Mohana Rao Patibandla, David Mathieu, Lucas T. Vasas, Anthony M. Kaufmann, Wei Gang Wang, Inga S. Grills, Christopher P. Cifarelli, Gabriella Paisan, John Vargo, Tomas Chytka, Ladislava Janouskova, Caleb E. Feliciano, Nanthiya Sujijantarat, Charles Matouk, Veronica Chiang, Judith Hess, Rafael Rodriguez-Mercado, Daniel A. Tonetti, L. Dade Lunsford and Jason P. Sheehan

OBJECTIVE

The authors performed a study to evaluate the hemorrhagic rates of cerebral dural arteriovenous fistulas (dAVFs) and the risk factors of hemorrhage following Gamma Knife radiosurgery (GKRS).

METHODS

Data from a cohort of patients undergoing GKRS for cerebral dAVFs were compiled from the International Radiosurgery Research Foundation. The annual posttreatment hemorrhage rate was calculated as the number of hemorrhages divided by the patient-years at risk. Risk factors for dAVF hemorrhage prior to GKRS and during the latency period after radiosurgery were evaluated in a multivariate analysis.

RESULTS

A total of 147 patients with dAVFs were treated with GKRS. Thirty-six patients (24.5%) presented with hemorrhage. dAVFs that had any cortical venous drainage (CVD) (OR = 3.8, p = 0.003) or convexity or torcula location (OR = 3.3, p = 0.017) were more likely to present with hemorrhage in multivariate analysis. Half of the patients had prior treatment (49.7%). Post-GRKS hemorrhage occurred in 4 patients, with an overall annual risk of 0.84% during the latency period. The annual risks of post-GKRS hemorrhage for Borden type 2–3 dAVFs and Borden type 2–3 hemorrhagic dAVFs were 1.45% and 0.93%, respectively. No hemorrhage occurred after radiological confirmation of obliteration. Independent predictors of hemorrhage following GKRS included nonhemorrhagic neural deficit presentation (HR = 21.6, p = 0.027) and increasing number of past endovascular treatments (HR = 1.81, p = 0.036).

CONCLUSIONS

Patients have similar rates of hemorrhage before and after radiosurgery until obliteration is achieved. dAVFs that have any CVD or are located in the convexity or torcula were more likely to present with hemorrhage. Patients presenting with nonhemorrhagic neural deficits and a history of endovascular treatments had higher risks of post-GKRS hemorrhage.