Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Matthew D. Smyth x
  • By Author: Kamath, Ashwin A. x
Clear All Modify Search
Free access

David Y. A. Dadey, Ashwin A. Kamath, Eric C. Leuthardt and Matthew D. Smyth

Subependymal giant cell astrocytoma (SEGA) is a rare tumor occurring almost exclusively in patients with tuberous sclerosis complex. Although open resection remains the standard therapy, complication rates remain high. To minimize morbidity, less invasive approaches, such as endoscope-assisted resection, radiosurgery, and chemotherapy with mTOR pathway inhibitors, are also used to treat these lesions. Laser interstitial thermal therapy (LITT) is a relatively new modality that is increasingly used to treat a variety of intracranial lesions. In this report, the authors describe two pediatric cases of SEGA that were treated with LITT. In both patients the lesion responded well to this treatment modality, with tumor shrinkage observed on follow-up MRI. These cases highlight the potential of LITT to serve as a viable minimally invasive therapeutic approach to the management of SEGAs in the pediatric population.

Free access

David Y. A. Dadey, Ashwin A. Kamath, Matthew D. Smyth, Michael R. Chicoine, Eric C. Leuthardt and Albert H. Kim

OBJECTIVE

The precision of laser probe insertion for interstitial thermal therapy of deep-seated lesions is limited by the method of stereotactic guidance. The objective of this study was to evaluate the feasibility of customized STarFix 3D-printed stereotactic platforms to guide laser probe insertion into mesiotemporal and posterior fossa targets.

METHODS

The authors conducted a retrospective review of 5 patients (12–55 years of age) treated with laser interstitial thermal therapy (LITT) in which STarFix platforms were used for probe insertion. Bone fiducials were implanted in each patient's skull, and subsequent CT scans were used to guide the design of each platform and incorporate desired treatment trajectories. Once generated, the platforms were mounted on the patients' craniums and used to position the laser probe during surgery. Placement of the laser probe and the LITT procedure were monitored with intraoperative MRI. Perioperative and follow-up MRI were performed to identify and monitor changes in target lesions.

RESULTS

Accurate placement of the laser probe was observed in all cases. For all patients, thermal ablation was accomplished without intraoperative complications. Of the 4 patients with symptomatic lesions, 2 experienced complete resolution of symptoms, and 1 reported improved symptoms compared with baseline.

CONCLUSIONS

Customized stereotactic platforms were seamlessly incorporated into the authors' previously established LITT workflow and allowed for accurate treatment delivery.

Full access

Jarod L. Roland, Richard L. Price, Ashwin A. Kamath, S. Hassan Akbari, Eric C. Leuthardt, Brandon A. Miller and Matthew D. Smyth

The authors describe 2 cases of triventricular hydrocephalus initially presenting as aqueductal stenosis that subsequently developed tumors of the pineal and tectal region. The first case resembled late-onset idiopathic aqueductal stenosis on serial imaging. Subsequent imaging revealed a new tumor in the pineal region causing mass effect on the midbrain. The second case presented in a more typical pattern of aqueductal stenosis during infancy. On delayed follow-up imaging, an enlarging tectal mass was discovered. In both cases hydrocephalus was successfully treated by cerebrospinal fluid diversion prior to tumor presentation. The differential diagnoses, diagnostic testing, and treatment course for these unusual cases are discussed. The importance of follow-up MRI in cases of idiopathic aqueductal stenosis is emphasized by these exemplar cases.