Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Andrew S. Little x
  • By Author: Kalani, M. Yashar S. x
Clear All Modify Search
Restricted access

M. Yashar S. Kalani, Nikolay L. Martirosyan, Andrew S. Little, Udaya K. Kakarla and Nicholas Theodore

The authors describe a rare case of tumoral calcinosis (TC) of the thoracic spine in a 13-year-old boy with thoracic scoliosis. The patient presented with a 2-year history of back pain. He had no personal or family history of bone disease, deformity, or malignancy. Magnetic resonance imaging revealed a heterogeneously enhancing mass involving the T-7 vertebral body and the left pedicle. Computed tomography findings suggested that the mass was calcified and that this had resulted in scalloping of the vertebral body. The lesion was resected completely by using a left T-7 costotransversectomy and corpectomy. The deformity was corrected with placement of a vertebral body cage and pedicle screw fixation from T-5 to T-9. Pathological analysis of the mass demonstrated dystrophic calcification with marked hypercellularity and immunostaining consistent with TC. This represents the third reported case of vertebral TC in the pediatric population. Pediatric neurosurgeons should be familiar with lesions such as TC, which may be encountered in the elderly and in hemodialysis-dependent populations, and may not always require aggressive resection.

Restricted access

Scott D. Wait, M. Yashar S. Kalani, Andrew S. Little, Giac D. Consiglieri, Jeffrey S. Ross, Matthew R. Kucia, Volker K. H. Sonntag and Nicholas Theodore


Patients who develop a lower-extremity neurological deficit after lumbar laminectomy present a diagnostic dilemma. In the setting of a neurological deficit, some surgeons use MRI to evaluate for symptomatic compression of the thecal sac. The authors conducted a prospective observational cohort study in patients undergoing open lumbar laminectomy for neurogenic claudication to document the MRI appearance of the postlaminectomy spine and to determine changes in thecal sac diameter caused by the accumulation of epidural fluid.


Eligible patients who were candidates for open lumbar laminectomy for neurogenic claudication at a single neurosurgical center between August 2007 and June 2009 were enrolled. Preoperative and postoperative MRI of the lumbar spine was performed on the same MRI scanner. Postoperative MRI studies were completed within 36 hours of surgery. Routine clinical and surgical data were collected at the preoperative visit, during surgery, and postoperatively. Images were interpreted for the signal characteristics of the epidural fluid and for thecal diameter (region of interest [ROI]) by 2 blinded neuroradiologists.


Twenty-four patients (mean age 69.7 years, range 30–83 years) were enrolled, and 20 completed the study. Single-level laminectomy was performed in 6 patients, 2-level in 12, and 3-level in 2. Preoperative canal measurements (ROI) at the most stenotic level averaged 0.26 cm2 (range 0.0–0.46 cm2), and postoperative ROI at that same level averaged 0.95 cm2 (range 0.46–2.05 cm2). The increase in ROI averaged 0.69 cm2 (range 0.07–1.81 cm2). Seven patients (35%) had immediate postoperative weakness in at least 1 muscle group graded at 4+/5. The decline in examination was believed to be effort dependent and secondary to discomfort in the acute postoperative period. Those with weakness had smaller increases in ROI (0.51 cm2) than those with full strength (0.78 cm2, p = 0.1599), but none had evidence of worsened thecal compression. On the 1st postoperative day, 19 patients were at full strength and all patients were at full strength at their 15-day follow-up. The T1-weighted epidural fluid signal was isointense in 19 of the 20 patients. The T2-weighted epidural fluid signal was hyperintense in 9, isointense in 4, and hypointense in 7 patients.


Immediately after lumbar laminectomy, the appearance of the thecal sac on MRI can vary widely. In most patients the thecal sac diameter increases after laminectomy despite the presence of epidural blood. In this observational cohort, a reduction in thecal diameter caused by epidural fluid did not correlate with motor function. Results in the small subset of patients where the canal diameter decreased due to epidural fluid compression of the thecal sac raises the question of the utility of immediate postoperative MRI.

Full access

Michael R. Levitt, Randall J. Hlubek, Karam Moon, M. Yashar S. Kalani, Peter Nakaji, Kris A. Smith, Andrew S. Little, Kerry Knievel, Jane W. Chan, Cameron G. McDougall and Felipe C. Albuquerque


Cerebral venous pressure gradient (CVPG) from dural venous sinus stenosis is implicated in headache syndromes such as idiopathic intracranial hypertension (IIH). The incidence of CVPG in headache patients has not been reported.


The authors reviewed all cerebral venograms with manometry performed for headache between January 2008 and May 2015. Patient demographics, headache etiology, intracranial pressure (ICP) measurements, and radiographic and manometric results were recorded. CVPG was defined as a difference ≥ 8 mm Hg by venographic manometry.


One hundred sixty-four venograms were performed in 155 patients. There were no procedural complications. Ninety-six procedures (58.5%) were for patients with IIH. The overall incidence of CVPG was 25.6% (42 of 164 procedures): 35.4% (34 of 96 procedures) in IIH patients and 11.8% (8 of 68 procedures) in non-IIH patients. Sixty procedures (36.6%) were performed in patients with preexisting shunts. Seventy-seven patients (49.7%) had procedures preceded by an ICP measurement within 4 weeks of venography, and in 66 (85.7%) of these patients, the ICP had been found to be elevated. CVPG was seen in 8.3% (n = 5) of the procedures in the 60 patients with a preexisting shunt and in 0% (n = 0) of the 11 procedures in the 77 patients with normal ICP (p < 0.001 for both). Noninvasive imaging (MR venography, CT venography) was assessed prior to venography in 112 (68.3%) of 164 cases, and dural venous sinus abnormalities were demonstrated in 73 (65.2%) of these cases; there was a trend toward CVPG (p = 0.07). Multivariate analysis demonstrated an increased likelihood of CVPG in patients with IIH (OR 4.97, 95% CI 1.71–14.47) and a decreased likelihood in patients with a preexisting shunt (OR 0.09, 95% CI 0.02–0.44).


CVPG is uncommon in IIH patients, rare in those with preexisting shunts, and absent in those with normal ICP.