Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Elizabeth Kuhn x
  • By Author: Johnston, James M. x
Clear All Modify Search
Restricted access

Tofey J. Leon, Elizabeth N. Kuhn, Anastasia A. Arynchyna, Burkely P. Smith, R. Shane Tubbs, James M. Johnston, Jeffrey P. Blount, Curtis J. Rozzelle, W. Jerry Oakes and Brandon G. Rocque

OBJECTIVE

There are sparse published data on the natural history of “benign” Chiari I malformation (CM-I)—i.e., Chiari with minimal or no symptoms at presentation and no imaging evidence of syrinx, hydrocephalus, or spinal cord signal abnormality. The purpose of this study was to review a large cohort of children with benign CM-I and to determine whether these children become symptomatic and require surgical treatment.

METHODS

Patients were identified from institutional outpatient records using International Classification of Diseases, 9th Revision, diagnosis codes for CM-I from 1996 to 2016. After review of the medical records, patients were excluded if they 1) did not have a diagnosis of CM-I, 2) were not evaluated by a neurosurgeon, 3) had previously undergone posterior fossa decompression, or 4) had imaging evidence of syringomyelia at their first appointment. To include only patients with benign Chiari (without syrinx or classic Chiari symptoms that could prompt immediate intervention), any patient who underwent decompression within 9 months of initial evaluation was excluded. After a detailed chart review, patients were excluded if they had classical Chiari malformation symptoms at presentation. The authors then determined what changes in the clinical picture prompted surgical treatment. Patients were excluded from the multivariate logistic regression analysis if they had missing data such as race and insurance; however, these patients were included in the overall survival analysis.

RESULTS

A total of 427 patients were included for analysis with a median follow-up duration of 25.5 months (range 0.17–179.1 months) after initial evaluation. Fifteen patients had surgery at a median time of 21.0 months (range 11.3–139.3 months) after initial evaluation. The most common indications for surgery were tussive headache in 5 (33.3%), syringomyelia in 5 (33.3%), and nontussive headache in 5 (33.3%). Using the Kaplan-Meier method, rate of freedom from posterior fossa decompression was 95.8%, 94.1%, and 93.1% at 3, 5, and 10 years, respectively.

CONCLUSIONS

Among a large cohort of patients with benign CM-I, progression of imaging abnormalities or symptoms that warrant surgical treatment is infrequent. Therefore, these patients should be managed conservatively. However, clinical follow-up of such individuals is justified, as there is a low, but nonzero, rate of new symptom or syringomyelia development. Future analyses will determine whether imaging or clinical features present at initial evaluation are associated with progression and future need for treatment.

Full access

Joseph H. Miller, Clarence Gill, Elizabeth N. Kuhn, Brandon G. Rocque, Joshua Y. Menendez, Jilian A. O'Neill, Bonita S. Agee, Steven T. Brown, Marshall Crowther, R. Drew Davis, Drew Ferguson and James M. Johnston

OBJECT

Pediatric sports-related concussions are a growing public health concern. The factors that determine injury severity and time to recovery following these concussions are poorly understood. Previous studies suggest that initial symptom severity and diagnosis of attention deficit hyperactivity disorder (ADHD) are predictors of prolonged recovery (> 28 days) after pediatric sports-related concussions. Further analysis of baseline patient characteristics may allow for a more accurate prediction of which patients are at risk for delayed recovery after a sports-related concussion.

METHODS

The authors performed a single-center retrospective case-control study involving patients cared for at the multidisciplinary Concussion Clinic at Children's of Alabama between August 2011 and January 2013. Patient demographic data, medical history, sport concussion assessment tool 2 (SCAT2) and symptom severity scores, injury characteristics, and patient balance assessments were analyzed for each outcome group. The control group consisted of patients whose symptoms resolved within 28 days. The case group included patients whose symptoms persisted for more than 28 days. The presence or absence of the SCAT2 assessment had a modifying effect on the risk for delayed recovery; therefore, stratum-specific analyses were conducted for patients with recorded SCAT2 scores and for patients without SCAT2 scores. Unadjusted ORs and adjusted ORs (aORs) for an association of delayed recovery outcome with specific risk factors were calculated with logistic regression analysis.

RESULTS

A total of 294 patients met the inclusion criteria of the study. The case and control groups did not statistically significantly differ in age (p = 0.7). For the patients who had received SCAT2 assessments, a previous history of concussion (aOR 3.67, 95% CI 1.51–8.95), presenting SCAT2 score < 80 (aOR 5.58, 95% CI 2.61–11.93), and female sex (aOR 3.48, 95% CI 1.43–8.49) were all associated with a higher risk for postconcussive symptoms lasting more than 28 days. For patients without SCAT2 scores, female sex and reporting a history of ADHD significantly increased the odds of prolonged recovery (aOR 4.41, 95% CI 1.93–10.07 and aOR 3.87, 95% CI 1.13–13.24, respectively). Concussions resulting from playing a nonhelmet sport were also associated with a higher risk for prolonged symptoms in patients with and without SCAT2 scores (OR 2.59, 95% CI 1.28–5.26 and OR 2.17, 95% CI 0.99–7.73, respectively). Amnesia, balance abnormalities, and a history of migraines were not associated with symptoms lasting longer than 28 days.

CONCLUSIONS

This case-control study suggests candidate risk factors for predicting prolonged recovery following sports-related concussion. Large prospective cohort studies of youth athletes examined and treated with standardized protocols will be needed to definitively establish these associations and confirm which children are at highest risk for delayed recovery.