Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Marek Kubicki x
  • By Author: Johnson, Andrew M. x
Clear All Modify Search
Free access

Inga K. Koerte, David Kaufmann, Elisabeth Hartl, Sylvain Bouix, Ofer Pasternak, Marek Kubicki, Alexander Rauscher, David K. B. Li, Shiroy B. Dadachanji, Jack A. Taunton, Lorie A. Forwell, Andrew M. Johnson, Paul S. Echlin and Martha E. Shenton

Object

The aim of this study was to investigate the effect of repetitive head impacts on white matter integrity that were sustained during 1 Canadian Interuniversity Sports (CIS) ice hockey season, using advanced diffusion tensor imaging (DTI).

Methods

Twenty-five male ice hockey players between 20 and 26 years of age (mean age 22.24 ± 1.59 years) participated in this study. Participants underwent pre- and postseason 3-T MRI, including DTI. Group analyses were performed using paired-group tract-based spatial statistics to test for differences between preseason and postseason changes.

Results

Tract-based spatial statistics revealed an increase in trace, radial diffusivity (RD), and axial diffusivity (AD) over the course of 1 season. Compared with preseason data, postseason images showed higher trace, AD, and RD values in the right precentral region, the right corona radiata, and the anterior and posterior limb of the internal capsule. These regions involve parts of the corticospinal tract, the corpus callosum, and the superior longitudinal fasciculus. No significant differences were observed between preseason and postseason for fractional anisotropy.

Conclusions

Diffusion tensor imaging revealed changes in white matter diffusivity in male ice hockey players over the course of 1 season. The origin of these findings needs to be elucidated.

Full access

Takeshi Sasaki, Ofer Pasternak, Michael Mayinger, Marc Muehlmann, Peter Savadjiev, Sylvain Bouix, Marek Kubicki, Eli Fredman, Brian Dahlben, Karl G. Helmer, Andrew M. Johnson, Jeffrey D. Holmes, Lorie A. Forwell, Elaine N. Skopelja, Martha E. Shenton, Paul S. Echlin and Inga K. Koerte

Object

The aim of this study was to examine the brain's white matter microstructure by using MR diffusion tensor imaging (DTI) in ice hockey players with a history of clinically symptomatic concussion compared with players without a history of concussion.

Methods

Sixteen players with a history of concussion (concussed group; mean age 21.7 ± 1.5 years; 6 female) and 18 players without a history of concussion (nonconcussed group; mean age 21.3 ± 1.8 years, 10 female) underwent 3-T DTI at the end of the 2011–2012 Canadian Interuniversity Sports ice hockey season. Tract-based spatial statistics (TBSS) was used to test for group differences in fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and the measure “trace,” or mean diffusivity. Cognitive evaluation was performed using the Immediate Postconcussion Assessment and Cognitive Test (ImPACT) and the Sport Concussion Assessment Tool–2 (SCAT2).

Results

TBSS revealed a significant increase in FA and AD, and a significant decrease in RD and trace in several brain regions in the concussed group, compared with the nonconcussed group (p < 0.05). The regions with increased FA and decreased RD and trace included the right posterior limb of the internal capsule, the right corona radiata, and the right temporal lobe. Increased AD was observed in a small area in the left corona radiata. The DTI measures correlated with neither the ImPACT nor the SCAT2 scores.

Conclusions

The results of the current study indicate that a history of concussion may result in alterations of the brain's white matter microstructure in ice hockey players. Increased FA based on decreased RD may reflect neuroinflammatory or neuroplastic processes of the brain responding to brain trauma. Future studies are needed that include a longitudinal analysis of the brain's structure and function following a concussion to elucidate further the complex time course of DTI changes and their clinical meaning.