Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Garnette R. Sutherland x
  • By Author: Hurlbert, R. John x
Clear All Modify Search
Restricted access

Taro Kaibara, R. John Hurlbert and Garnette R. Sutherland

✓ Transoral decompression of the cervicomedullary junction may be compromised by a narrow corridor in which surgery is performed, and thus the adequacy of surgical decompression/resection may be difficult to determine. This is problematic as the presence of spinal instrumentation may obscure the accuracy of postoperative radiological assessment, or the patient may require reoperation. The authors describe three patients in whom high-field intraoperative magnetic resonance (MR) images were acquired at various stages during the transoral resection of C-2 disease that had caused craniocervical junction compression.

All three patients harbored different lesions involving the cervicomedullary junction: one each of plasmacytoma and metastatic breast carcinoma involving the odontoid process and C-2 vertebral body, and basilar invagination with a Chiari I malformation. All patients presented with progressive myelopathy. Surgical planning MR imaging studies performed after the induction of anesthesia demonstrated the lesion and its relationship to the planned surgical corridor. Transoral exposure was achieved through placement of a Crockard retractor system. In one case the soft palate was divided. Interdissection MR imaging revealed that adequate decompression had been achieved in all cases. The two patients with carcinoma required placement of posterior instrumentation for stabilization. Planned suboccipital decompression and placement of instrumentation were averted in the third case as the intraoperative MR images demonstrated that excellent decompression had been achieved.

Intraoperatively acquired MR images were instrumental in determining the adequacy of the decompressive surgery. In one of the three cases, examination of the images led the authors to change the planned surgical procedure. Importantly, the acquisition of intraoperative MR images did not adversely affect operating time or neurosurgical techniques, including instrumentation requirements.

Full access

Taro Kaibara, R. John Hurlbert and Garnette R. Sutherland

Object

Because transoral decompression of the cervicomedullary junction is compromised by a narrow surgical corridor, the adequacy of decompression/resection may be difficult to determine. This is problematic as spinal hardware may obscure postoperative radiological assessment, or the patient may require reoperation. The authors report three patients in whom high-field intraoperative magnetic resonance (MR) images were acquired at various stages during the transoral resection of C-2 lesions causing craniocervical junction compression.

Methods

In all three patients the lesions involved the cervicomedullary junction: one case each of plasmacytoma and metastatic breast carcinoma involving the odontoid process and C-2 vertebral body, and one case of basilar invagination with a Chiari type I malformation. All three patients presented with progressive myelopathy. Surgery-planning MR imaging studies, performed after the induction of anesthesia, demonstrated the lesion and its relationship to the planned surgical corridor. Transoral exposure was achieved through placement of a Crockard retractor system. In one case the soft palate was divided. Interdissection MR imaging revealed that adequate decompression had been achieved in all cases. In the two patients with carcinoma, posterior instrumentation was placed to achieve spinal stabilization. Planned suboccipital decompression and fixation was averted in the third case because MR imaging demonstrated that excellent decompression had been achieved.

Conclusions

Intraoperatively acquired MR images were instrumental in determining the adequacy of surgical decompression. In one patient the MR images changed the planned surgical procedure. Importantly, the acquisition of intraoperative MR images did not adversely affect operative time or neurosurgical techniques, including the instrumentation procedure.

Restricted access