Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: Christopher I. Shaffrey x
  • By Author: Hart, Robert A. x
Clear All Modify Search
Restricted access

Kai-Ming G. Fu, Justin S. Smith, David W. Polly Jr., Joseph H. Perra, Charles A. Sansur, Sigurd H. Berven, Paul A. Broadstone, Theodore J. Choma, Michael J. Goytan, Hilali H. Noordeen, D. Raymond Knapp Jr., Robert A. Hart, Reinhard D. Zeller, William F. Donaldson III, Oheneba Boachie-Adjei and Christopher I. Shaffrey

Object

The purpose of this study was to evaluate the prospectively collected Scoliosis Research Society (SRS) database to assess the incidences of morbidity and mortality (M&M) in the operative treatment of degenerative lumbar stenosis, one of the most common procedures performed by spine surgeons.

Methods

All patients who underwent surgical treatment for degenerative lumbar stenosis between 2004 and 2007 were identified from the SRS M&M database. Inclusion criteria for analysis included an age ≥ 21 years and no history of lumbar surgery. Patients were treated with either decompression alone or decompression with concomitant fusion. Statistical comparisons were performed using a 2-sided Fisher exact test.

Results

Of the 10,329 patients who met the inclusion criteria, 6609 (64%) were treated with decompression alone, and 3720 (36%) were treated with decompression and fusion. Among those who underwent fusion, instrumentation was placed in 3377 (91%). The overall mean patient age was 63 ± 13 years (range 21–96 years). Seven hundred nineteen complications (7.0%), including 13 deaths (0.1%), were identified. New neurological deficits were reported in 0.6% of patients. Deaths were related to cardiac (4 cases), respiratory (5 cases), pulmonary embolus (2 cases), and sepsis (1 case) etiologies, and a perforated gastric ulcer (1 case). Complication rates did not differ based on patient age or whether fusion was performed. Minimally invasive procedures were associated with fewer complications and fewer new neurological deficits (p = 0.01 and 0.03, respectively).

Conclusions

The results from this analysis of the SRS M&M database provide surgeons with useful information for preoperative counseling of patients contemplating surgical intervention for symptomatic degenerative lumbar stenosis.

Restricted access

Charles A. Sansur, Davis L. Reames, Justin S. Smith, D. Kojo Hamilton, Sigurd H. Berven, Paul A. Broadstone, Theodore J. Choma, Michael James Goytan, Hilali H. Noordeen, Dennis Raymond Knapp Jr., Robert A. Hart, Reinhard D. Zeller, William F. Donaldson III, David W. Polly Jr., Joseph H. Perra, Oheneba Boachie-Adjei and Christopher I. Shaffrey

Object

This is a retrospective review of 10,242 adults with degenerative spondylolisthesis (DS) and isthmic spondylolisthesis (IS) from the morbidity and mortality (M&M) index of the Scoliosis Research Society (SRS). This database was reviewed to assess complication incidence, and to identify factors that were associated with increased complication rates.

Methods

The SRS M&M database was queried to identify cases of DS and IS treated between 2004 and 2007. Complications were identified and analyzed based on age, surgical approach, spondylolisthesis type/grade, and history of previous surgery. Age was stratified into 2 categories: > 65 years and ≤ 65 years. Surgical approach was stratified into the following categories: decompression without fusion, anterior, anterior/posterior, posterior without instrumentation, posterior with instrumentation, and interbody fusion. Spondylolisthesis grades were divided into low-grade (Meyerding I and II) versus high-grade (Meyerding III, IV, and V) groups. Both univariate and multivariate analyses were performed.

Results

In the 10,242 cases of DS and IS reported, there were 945 complications (9.2%) in 813 patients (7.9%). The most common complications were dural tears, wound infections, implant complications, and neurological complications (range 0.7%–2.1%). The mortality rate was 0.1%. Diagnosis of DS had a significantly higher complication rate (8.5%) when compared with IS (6.6%; p = 0.002). High-grade spondylolisthesis correlated strongly with a higher complication rate (22.9% vs 8.3%, p < 0.0001). Age > 65 years was associated with a significantly higher complication rate (p = 0.02). History of previous surgery and surgical approach were not significantly associated with higher complication rates. On multivariate analysis, only the grade of spondylolisthesis (low vs high) was in the final best-fit model of factors associated with the occurrence of complications (p < 0.0001).

Conclusions

The rate of total complications for treatment of DS and IS in this series was 9.2%. The total percentage of patients with complications was 7.9%. On univariate analysis, the complication rate was significantly higher in patients with high-grade spondylolisthesis, a diagnosis of DS, and in older patients. Surgical approach and history of previous surgery were not significantly correlated with increased complication rates. On multivariate analysis, only the grade of spondylolisthesis was significantly associated with the occurrence of complications.

Restricted access

Frank J. Schwab, Ashish Patel, Christopher I. Shaffrey, Justin S. Smith, Jean-Pierre Farcy, Oheneba Boachie-Adjei, Richard A. Hostin, Robert A. Hart, Behrooz A. Akbarnia, Douglas C. Burton, Shay Bess and Virginie Lafage

Object

Pedicle subtraction osteotomy (PSO) is a surgical procedure that is frequently performed on patients with sagittal spinopelvic malalignment. Although it allows for substantial spinopelvic realignment, suboptimal realignment outcomes have been reported in up to 33% of patients. The authors' objective in the present study was to identify differences in radiographic profiles and surgical procedures between patients achieving successful versus failed spinopelvic realignment following PSO.

Methods

This study is a multicenter retrospective consecutive PSO case series. The authors evaluated 99 cases involving patients who underwent PSO for sagittal spinopelvic malalignment. Because precise cutoffs of acceptable residual postoperative sagittal vertical axis (SVA) values have not been well defined, comparisons were focused between patient groups with a postoperative SVA that could be clearly considered either a success or a failure. Only cases in which the patients had a postoperative SVA of less than 50 mm (successful PSO realignment) or more than 100 mm (failed PSO realignment) were included in the analysis. Radiographic measures and PSO parameters were compared between successful and failed PSO realignments.

Results

Seventy-nine patients met the inclusion criteria. Successful realignment was achieved in 61 patients (77%), while realignment failed in 18 (23%). Patients with failed realignment had larger preoperative SVA (mean 217.9 vs 106.7 mm, p < 0.01), larger pelvic tilt (mean 36.9° vs 30.7°, p < 0.01), larger pelvic incidence (mean 64.2° vs 53.7°, p < 0.01), and greater lumbar lordosis–pelvic incidence mismatch (−47.1° vs −30.9°, p < 0.01) compared with those in whom realignment was successful. Failed and successful realignments were similar regarding the vertebral level of the PSO, the median size of wedge resection 22.0° (interquartile range 16.5°−28.5°), and the numerical changes in pre- and postoperative spinopelvic parameters (p > 0.05).

Conclusions

Patients with failed PSO realignments had significantly larger preoperative spinopelvic deformity than patients in whom realignment was successful. Despite their apparent need for greater correction, the patients in the failed realignment group only received the same amount of correction as those in the successfully realigned patients. A single-level standard PSO may not achieve optimal outcome in patients with high preoperative spinopelvic sagittal malalignment. Patients with large spinopelvic deformities should receive larger osteotomies or additional corrective procedures beyond PSOs to avoid undercorrection.

Free access

Justin K. Scheer, Jessica A. Tang, Justin S. Smith, Eric Klineberg, Robert A. Hart, Gregory M. Mundis Jr., Douglas C. Burton, Richard Hostin, Michael F. O'Brien, Shay Bess, Khaled M. Kebaish, Vedat Deviren, Virginie Lafage, Frank Schwab, Christopher I. Shaffrey, Christopher P. Ames and the International Spine Study Group

Object

Complications and reoperation for surgery to correct adult spinal deformity are not infrequent, and many studies have analyzed the rates and factors that influence the likelihood of reoperation. However, there is a need for more comprehensive analyses of reoperation in adult spinal deformity surgery from a global standpoint, particularly focusing on the 1st year following operation and considering radiographic parameters and the effects of reoperation on health-related quality of life (HRQOL). This study attempts to determine the prevalence of reoperation following surgery for adult spinal deformity, assess the indications for these reoperations, evaluate for a relation between specific radiographic parameters and the need for reoperation, and determine the potential impact of reoperation on HRQOL measures.

Methods

A retrospective review was conducted of a prospective, multicenter, adult spinal deformity database collected through the International Spine Study Group. Data collected included age, body mass index, sex, date of surgery, information regarding complications, reoperation dates, length of stay, and operation time. The radiographic parameters assessed were total number of levels instrumented, total number of interbody fusions, C-7 sagittal vertical axis, uppermost instrumented vertebra (UIV) location, and presence of 3-column osteotomies. The HRQOL assessment included Oswestry Disability Index (ODI), 36-Item Short Form Health Survey physical component and mental component summary, and SRS-22 scores. Smoking history, Charlson Comorbidity Index scores, and American Society of Anesthesiologists Physical Status classification grades were also collected and assessed for correlation with risk of early reoperation. Various statistical tests were performed for evaluation of specific factors listed above, and the level of significance was set at p < 0.05.

Results

Fifty-nine (17%) of a total of 352 patients required reoperation. Forty-four (12.5%) of the reoperations occurred within 1 year after the initial surgery, including 17 reoperations (5%) within 30 days.

Two hundred sixty-eight patients had a minimum of 1 year of follow-up. Fifty-three (20%) of these patients had a 3-column osteotomy, and 10 (19%) of these 53 required reoperation within 1 year of the initial procedure. However, 3-column osteotomy was not predictive of reoperation within 1 year, p = 0.5476). There were no significant differences between groups with regard to the distribution of UIV, and UIV did not have a significant effect on reoperation rates. Patients needing reoperation within 1 year had worse ODI and SRS-22 scores measured at 1-year follow-up than patients not requiring operation.

Conclusions

Analysis of data from a large multicenter adult spinal deformity database shows an overall 17% reoperation rate, with a 19% reoperation rate for patients treated with 3-column osteotomy and a 16% reoperation rate for patients not treated with 3-column osteotomy. The most common indications for reoperation included instrumentation complications and radiographic failure. Reoperation significantly affected HRQOL outcomes at 1-year follow-up. The need for reoperation may be minimized by carefully considering spinal alignment, termination of fixation, and type of surgical procedure (presence of osteotomy). Precautions should be taken to avoid malposition or instrumentation (rod) failure.

Full access

Justin K. Scheer, Justin S. Smith, Aaron J. Clark, Virginie Lafage, Han Jo Kim, John D. Rolston, Robert Eastlack, Robert A. Hart, Themistocles S. Protopsaltis, Michael P. Kelly, Khaled Kebaish, Munish Gupta, Eric Klineberg, Richard Hostin, Christopher I. Shaffrey, Frank Schwab, Christopher P. Ames and the International Spine Study Group

OBJECT

Back and leg pain are the primary outcomes of adult spinal deformity (ASD) and predict patients' seeking of surgical management. The authors sought to characterize changes in back and leg pain after operative or nonoperative management of ASD. Outcomes were assessed according to pain severity, type of surgical procedure, Scoliosis Research Society (SRS)–Schwab spine deformity class, and patient satisfaction.

METHODS

This study retrospectively reviewed data in a prospective multicenter database of ASD patients. Inclusion criteria were the following: age > 18 years and presence of spinal deformity as defined by a scoliosis Cobb angle ≥ 20°, sagittal vertical axis length ≥ 5 cm, pelvic tilt angle ≥ 25°, or thoracic kyphosis angle ≥ 60°. Patients were grouped into nonoperated and operated subcohorts and by the type of surgical procedure, spine SRS-Schwab deformity class, preoperative pain severity, and patient satisfaction. Numerical rating scale (NRS) scores of back and leg pain, Oswestry Disability Index (ODI) scores, physical component summary (PCS) scores of the 36-Item Short Form Health Survey, minimum clinically important differences (MCIDs), and substantial clinical benefits (SCBs) were assessed.

RESULTS

Patients in whom ASD had been operatively managed were 6 times more likely to have an improvement in back pain and 3 times more likely to have an improvement in leg pain than patients in whom ASD had been nonoperatively managed. Patients whose ASD had been managed nonoperatively were more likely to have their back or leg pain remain the same or worsen. The incidence of postoperative leg pain was 37.0% at 6 weeks postoperatively and 33.3% at the 2-year follow-up (FU). At the 2-year FU, among patients with any preoperative back or leg pain, 24.3% and 37.8% were free of back and leg pain, respectively, and among patients with severe (NRS scores of 7–10) preoperative back or leg pain, 21.0% and 32.8% were free of back and leg pain, respectively. Decompression resulted in more patients having an improvement in leg pain and their pain scores reaching MCID. Although osteotomies improved back pain, they were associated with a higher incidence of leg pain. Patients whose spine had an SRS-Schwab coronal curve Type N deformity (sagittal malalignment only) were least likely to report improvements in back pain. Patients with a Type L deformity were most likely to report improved back or leg pain and to have reductions in pain severity scores reaching MCID and SCB. Patients with a Type D deformity were least likely to report improved leg pain and were more likely to experience a worsening of leg pain. Preoperative pain severity affected pain improvement over 2 years because patients who had higher preoperative pain severity experienced larger improvements, and their changes in pain severity were more likely to reach MCID/SCB than for those reporting lower preoperative pain. Reductions in back pain contributed to improvements in ODI and PCS scores and to patient satisfaction more than reductions in leg pain did.

CONCLUSIONS

The authors' results provide a valuable reference for counseling patients preoperatively about what improvements or worsening in back or leg pain they may experience after surgical intervention for ASD.

Full access

Themistocles S. Protopsaltis, Justin K. Scheer, Jamie S. Terran, Justin S. Smith, D. Kojo Hamilton, Han Jo Kim, Greg M. Mundis Jr., Robert A. Hart, Ian M. McCarthy, Eric Klineberg, Virginie Lafage, Shay Bess, Frank Schwab, Christopher I. Shaffrey, Christopher P. Ames and International Spine Study Group

OBJECT

Regional cervical sagittal alignment (C2–7 sagittal vertical axis [SVA]) has been shown to correlate with health-related quality of life (HRQOL). The study objective was to examine the relationship between cervical and thoracolumbar alignment parameters with HRQOL among patients with operative and nonoperative adult thoracolumbar deformity.

METHODS

This is a multicenter prospective data collection of consecutive patients with adult thoracolumbar spinal deformity. Clinical measures of disability included the Oswestry Disability Index (ODI), Scoliosis Research Society-22 Patient Questionnaire (SRS-22), and 36-Item Short-Form Health Survey (SF-36). Cervical radiographic parameters were correlated with global sagittal parameters within the nonoperative and operative cohorts. A partial correlation analysis was performed controlling for C-7 SVA. The operative group was subanalyzed by the magnitude of global deformity (C-7 SVA ≥ 5 cm vs < 5 cm).

RESULTS

A total of 318 patients were included (186 operative and 132 nonoperative). The mean age was 55.4 ± 14.9 years. Operative patients had significantly worse baseline HRQOL and significantly larger C-7 SVA, pelvic tilt (PT), mismatch between pelvic incidence and lumbar lordosis (PI-LL), and C2-7 SVA. The operative patients with baseline C-7 SVA ≥ 5 cm had significantly larger C2-7 lordosis (CL), C2-7 SVA, C-7 SVA, PI-LL, and PT than patients with a normal C-7 SVA. For all patients, baseline C2-7 SVA and CL significantly correlated with baseline ODI, Physical Component Summary (PCS), SRS Activity domain, and SRS Appearance domain. Baseline C2-7 SVA also correlated with SRS Pain and SRS Total. For the operative patients with baseline C-7 SVA ≥ 5 cm, the 2-year C2-7 SVA significantly correlated with 2-year Mental Component Summary, SRS Mental, SRS Satisfaction, and decreases in ODI. Decreases in C2-7 SVA at 2 years significantly correlated with lower ODI at 2 years. Using partial correlations while controlling for C-7 SVA, the C2-7 SVA correlated significantly with baseline ODI (r = 0.211, p = 0.002), PCS (r = −0.178, p = 0.009), and SRS Activity (r = −0.145, p = 0.034) for the entire cohort. In the subset of operative patients with larger thoracolumbar deformities, the change in C2-7 SVA correlated with change in ODI (r = −0.311, p = 0.03).

CONCLUSIONS

Changes in cervical lordosis correlate to HRQOL improvements in thoracolumbar deformity patients at 2-year follow-up. Regional cervical sagittal parameters such as CL and C2–7 SVA are correlated with clinical measures of regional disability and health status in patients with adult thoracolumbar scoliosis. This effect may be direct or a reciprocal effect of the underlying global deformities on regional cervical alignment. However, the partial correlation analysis, controlling for the magnitude of the thoracolumbar deformity, suggests that there is a direct effect of cervical alignment on health measures. Improvements in regional cervical alignment postoperatively correlated positively with improved HRQOL.

Free access

Justin S. Smith, Christopher I. Shaffrey, Virginie Lafage, Frank Schwab, Justin K. Scheer, Themistocles Protopsaltis, Eric Klineberg, Munish Gupta, Richard Hostin, Kai-Ming G. Fu, Gregory M. Mundis Jr., Han Jo Kim, Vedat Deviren, Alex Soroceanu, Robert A. Hart, Douglas C. Burton, Shay Bess, Christopher P. Ames and the International Spine Study Group

OBJECT

Although recent studies suggest that average clinical outcomes are improved following surgery for selected adult spinal deformity (ASD) patients, these outcomes span a broad range. Few studies have specifically addressed factors that may predict favorable clinical outcomes. The objective of this study was to compare patients with ASD with best versus worst clinical outcomes following surgical treatment to identify distinguishing factors that may prove useful for patient counseling and optimization of clinical outcomes.

METHODS

This is a retrospective review of a prospectively collected, multicenter, database of consecutively enrolled patients with ASD who were treated operatively. Inclusion criteria were age > 18 years and ASD. For patients with a minimum of 2-year follow-up, those with best versus worst outcomes were compared separately based on Scoliosis Research Society-22 (SRS-22) and Oswestry Disability Index (ODI) scores. Only patients with a baseline SRS-22 ≤ 3.5 or ODI ≥ 30 were included to minimize ceiling/floor effects. Best and worst outcomes were defined for SRS-22 (≥ 4.5 and ≤ 2.5, respectively) and ODI (≤ 15 and ≥ 50, respectively).

RESULTS

Of 257 patients who met the inclusion criteria, 227 (88%) had complete baseline and 2-year follow-up SRS-22 and ODI outcomes scores and radiographic imaging and were analyzed in the present study. Of these 227 patients, 187 had baseline SRS-22 scores ≤ 3.5, and 162 had baseline ODI scores ≥ 30. Forthe SRS-22, best and worst outcomes criteria were met at follow-up for 25 and 27 patients, respectively. For the ODI, best and worst outcomes criteria were met at follow-up for 43 and 51 patients, respectively. With respect to the SRS-22, compared with best outcome patients, those with worst outcomes had higher baseline SRS-22 scores (p < 0.0001), higher prevalence of baseline depression (p < 0.001), more comorbidities (p = 0.012), greater prevalence of prior surgery (p = 0.007), a higher complication rate (p = 0.012), and worse baseline deformity (sagittal vertical axis [SVA], p = 0.045; pelvic incidence [PI] and lumbar lordosis [LL] mismatch, p = 0.034). The best-fit multivariate model for SRS-22 included baseline SRS-22 (p = 0.033), baseline depression (p = 0.012), and complications (p = 0.030). With respect to the ODI, compared with best outcome patients, those with worst outcomes had greater baseline ODI scores (p < 0.001), greater baseline body mass index (BMI; p = 0.002), higher prevalence of baseline depression (p < 0.028), greater baseline SVA (p = 0.016), a higher complication rate (p = 0.02), and greater 2-year SVA (p < 0.001) and PI-LL mismatch (p = 0.042). The best-fit multivariate model for ODI included baseline ODI score (p < 0.001), 2-year SVA (p = 0.014) and baseline BMI (p = 0.037). Age did not distinguish best versus worst outcomes for SRS-22 or ODI (p > 0.1).

CONCLUSIONS

Few studies have specifically addressed factors that distinguish between the best versus worst clinical outcomes for ASD surgery. In this study, baseline and perioperative factors distinguishing between the best and worst outcomes for ASD surgery included several patient factors (baseline depression, BMI, comorbidities, and disability), as well as residual deformity (SVA), and occurrence of complications. These findings suggest factors that may warrant greater awareness among clinicians to achieve optimal surgical outcomes for patients with ASD.

Full access

Alex Soroceanu, Douglas C. Burton, Bassel Georges Diebo, Justin S. Smith, Richard Hostin, Christopher I. Shaffrey, Oheneba Boachie-Adjei, Gregory M. Mundis Jr., Christopher Ames, Thomas J. Errico, Shay Bess, Munish C. Gupta, Robert A. Hart, Frank J. Schwab, Virginie Lafage and International Spine Study Group

OBJECT

Adult spinal deformity (ASD) surgery is known for its high complication rate. This study examined the impact of obesity on complication rates, infection, and patient-reported outcomes in patients undergoing surgery for ASD.

METHODS

This study was a retrospective review of a multicenter prospective database of patients with ASD who were treated surgically. Patients with available 2-year follow-up data were included. Obesity was defined as having a body mass index (BMI) ≥ 30 kg/m2. Data collected included complications (total, minor, major, implant-related, radiographic, infection, revision surgery, and neurological injury), estimated blood loss (EBL), operating room (OR) time, length of stay (LOS), and patient-reported questionnaires (Oswestry Disability Index [ODI], Short Form-36 [SF-36], and Scoliosis Research Society [SRS]) at baseline and at 6 weeks, 1 year, and 2 years postoperatively. The impact of obesity was studied using multivariate modeling, accounting for confounders.

RESULTS

Of 241 patients who satisfied inclusion criteria, 175 patients were nonobese and 66 were obese. Regression models showed that obese patients had a higher overall incidence of major complications (IRR 1.54, p = 0.02) and wound infections (odds ratio 4.88, p = 0.02). Obesity did not increase the number of minor complications (p = 0.62), radiographic complications (p = 0.62), neurological complications (p = 0.861), or need for revision surgery (p = 0.846). Obesity was not significantly correlated with OR time (p = 0.23), LOS (p = 0.9), or EBL (p = 0.98). Both groups experienced significant improvement overtime, as measured on the ODI (p = 0.0001), SF-36 (p = 0.0001), and SRS (p = 0.0001) questionnaires. However, the overall magnitude of improvement was less for obese patients (ODI, p = 0.0035; SF-36, p = 0.0012; SRS, p = 0.022). Obese patients also had a lower rate of improvement over time (SRS, p = 0.0085; ODI, p = 0.0001; SF-36, p = 0.0001).

CONCLUSIONS

This study revealed that obese patients have an increased risk of complications following ASD correction. Despite these increased complications, obese patients do benefit from surgical intervention; however, their improvement in health-related quality of life (HRQL) is less than that of nonobese patients.