Search Results

You are looking at 1 - 10 of 24 items for

  • Author or Editor: Justin Smith x
  • By Author: Hart, Robert x
Clear All Modify Search
Free access

Christopher P. Ames, Justin S. Smith, Justin K. Scheer, Christopher I. Shaffrey, Virginie Lafage, Vedat Deviren, Bertrand Moal, Themistocles Protopsaltis, Praveen V. Mummaneni, Gregory M. Mundis Jr., Richard Hostin, Eric Klineberg, Douglas C. Burton, Robert Hart, Shay Bess, Frank J. Schwab and the International Spine Study Group

Object

Cervical spine osteotomies are powerful techniques to correct rigid cervical spine deformity. Many variations exist, however, and there is no current standardized system with which to describe and classify cervical osteotomies. This complicates the ability to compare outcomes across procedures and studies. The authors' objective was to establish a universal nomenclature for cervical spine osteotomies to provide a common language among spine surgeons.

Methods

A proposed nomenclature with 7 anatomical grades of increasing extent of bone/soft tissue resection and destabilization was designed. The highest grade of resection is termed the major osteotomy, and an approach modifier is used to denote the surgical approach(es), including anterior (A), posterior (P), anterior-posterior (AP), posterior-anterior (PA), anterior-posterior-anterior (APA), and posterior-anterior-posterior (PAP). For cases in which multiple grades of osteotomies were performed, the highest grade is termed the major osteotomy, and lower-grade osteotomies are termed minor osteotomies. The nomenclature was evaluated by 11 reviewers through 25 different radiographic clinical cases. The review was performed twice, separated by a minimum 1-week interval. Reliability was assessed using Fleiss kappa coefficients.

Results

The average intrarater reliability was classified as “almost perfect agreement” for the major osteotomy (0.89 [range 0.60–1.00]) and approach modifier (0.99 [0.95–1.00]); it was classified as “moderate agreement” for the minor osteotomy (0.73 [range 0.41–1.00]). The average interrater reliability for the 2 readings was the following: major osteotomy, 0.87 (“almost perfect agreement”); approach modifier, 0.99 (“almost perfect agreement”); and minor osteotomy, 0.55 (“moderate agreement”). Analysis of only major osteotomy plus approach modifier yielded a classification that was “almost perfect” with an average intrarater reliability of 0.90 (0.63–1.00) and an interrater reliability of 0.88 and 0.86 for the two reviews.

Conclusions

The proposed cervical spine osteotomy nomenclature provides the surgeon with a simple, standard description of the various cervical osteotomies. The reliability analysis demonstrated that this system is consistent and directly applicable. Future work will evaluate the relationship between this system and health-related quality of life metrics.

Full access

Alexander A. Theologis, Tamir Ailon, Justin K. Scheer, Justin S. Smith, Christopher I. Shaffrey, Shay Bess, Munish Gupta, Eric O. Klineberg, Khaled Kebaish, Frank Schwab, Virginie Lafage, Douglas Burton, Robert Hart, Christopher P. Ames and The International Spine Study Group

OBJECTIVE

The objective of this study was to isolate whether the effect of a baseline clinical history of depression on outcome is independent of associated physical disability and to evaluate which mental health screening tool has the most utility in determining 2-year clinical outcomes after adult spinal deformity (ASD) surgery.

METHODS

Consecutively enrolled patients with ASD in a prospective, multicenter ASD database who underwent surgical intervention with a minimum 2-year follow-up were retrospectively reviewed. A subset of patients who completed the Distress and Risk Assessment Method (DRAM) was also analyzed. The effects of categorical baseline depression and DRAM classification on the Oswestry Disability Index (ODI), SF-36, and Scoliosis Research Society questionnaire (SRS-22r) were assessed using univariate and multivariate linear regression analyses. The probability of achieving ≥ 1 minimal clinically important difference (MCID) on the ODI based on the DRAM’s Modified Somatic Perceptions Questionnaire (MSPQ) score was estimated.

RESULTS

Of 267 patients, 66 (24.7%) had self-reported preoperative depression. Patients with baseline depression had significantly more preoperative back pain, greater BMI and Charlson Comorbidity Indices, higher ODIs, and lower SRS-22r and SF-36 Physical/Mental Component Summary (PCS/MCS) scores compared with those without self-reported baseline depression. They also had more severe regional and global sagittal malalignment. After adjusting for these differences, preoperative depression did not impact 2-year ODI, PCS/MCS, or SRS-22r totals (p > 0.05). Compared with those in the “normal” DRAM category, “distressed somatics” (n = 11) had higher ODI (+23.5 points), lower PCS (−10.9), SRS-22r activity (−0.9), and SRS-22r total (−0.8) scores (p ≤ 0.01), while “distressed depressives” (n = 25) had lower PCS (−8.4) and SRS-22r total (−0.5) scores (p < 0.05). After adjusting for important covariates, each additional point on the baseline MSPQ was associated with a 0.8-point increase in 2-year ODI (p = 0.03). The probability of improving by at least 1 MCID in 2-year ODI ranged from 77% to 21% for MSPQ scores 0–20, respectively.

CONCLUSIONS

A baseline clinical history of depression does not correlate with worse 2-year outcomes after ASD surgery after adjusting for baseline differences in comorbidities, health-related quality of life, and spinal deformity severity. Conversely, DRAM improved risk stratification of patient subgroups predisposed to achieving suboptimal surgical outcomes. The DRAM’s MSPQ was more predictive than MCS and SRS mental domain for 2-year outcomes and may be a valuable tool for surgical screening.

Restricted access

Justin S. Smith, Christopher I. Shaffrey, Virginie Lafage, Benjamin Blondel, Frank Schwab, Richard Hostin, Robert Hart, Brian O'Shaughnessy, Shay Bess, Serena S. Hu, Vedat Deviren, Christopher P. Ames and International Spine Study Group

Object

Sagittal spinopelvic malalignment is a significant cause of pain and disability in patients with adult spinal deformity. Surgical correction of spinopelvic malalignment can result in compensatory changes in spinal alignment outside of the fused spinal segments. These compensatory changes, termed reciprocal changes, have been defined for thoracic and lumbar regions but not for the cervical spine. The object of this study was to evaluate postoperative reciprocal changes within the cervical spine following lumbar pedicle subtraction osteotomy (PSO).

Methods

This was a multicenter retrospective radiographic analysis of patients from International Spine Study Group centers. Inclusion criteria were as follows: adults (>18 years old) with spinal deformity treated using lumbar PSO, a preoperative C7–S1 plumb line greater than 5 cm, and availability of pre- and postoperative full-length standing radiographs.

Results

Seventy-five patients (60 women, mean age 59 years) were included. The lumbar PSO significantly improved sagittal alignment, including the C7–S1 plumb line, C7–T12 inclination, and pelvic tilt (p <0.001). After lumbar PSO, reciprocal changes were seen to occur in C2–7 cervical lordosis (from 30.8° to 21.6°, p <0.001), C2–7 plumb line (from 27.0 mm to 22.9 mm), and T-1 slope (from −38.9° to −30.4°, p <0.001). Ideal correction of sagittal malalignment (postoperative sagittal vertical alignment < 50 mm) was associated with the greatest relaxation of cervical hyperlordosis (−12.4° vs −5.7°, p = 0.037). A change in cervical lordosis correlated with changes in T-1 slope (r = −0.621, p <0.001), C7–T12 inclination (r = 0.418, p <0.001), T12–S1 angle (r = −0.339, p = 0.005), and C7–S1 plumb line (r = 0.289, p = 0.018). Radiographic parameters that correlated with changes in cervical lordosis on multivariate linear regression analysis included change in T-1 slope and change in C2–7 plumb line (r2 = 0.53, p <0.001).

Conclusions

Adults with positive sagittal spinopelvic malalignment compensate with abnormally increased cervical lordosis in an effort to maintain horizontal gaze. Surgical correction of sagittal malalignment results in improvement of the abnormal cervical hyperlordosis through reciprocal changes.

Full access

Alexander A. Theologis, Gregory M. Mundis Jr., Stacie Nguyen, David O. Okonkwo, Praveen V. Mummaneni, Justin S. Smith, Christopher I. Shaffrey, Richard Fessler, Shay Bess, Frank Schwab, Bassel G. Diebo, Douglas Burton, Robert Hart, Vedat Deviren and Christopher Ames

OBJECTIVE

The aim of this study was to evaluate the utility of supplementing long thoracolumbar posterior instrumented fusion (posterior spinal fusion, PSF) with lateral interbody fusion (LIF) of the lumbar/thoracolumbar coronal curve apex in adult spinal deformity (ASD).

METHODS

Two multicenter databases were evaluated. Adults who had undergone multilevel LIF of the coronal curve apex in addition to PSF with L5–S1 interbody fusion (LS+Apex group) were matched by number of posterior levels fused with patients who had undergone PSF with L5–S1 interbody fusion without LIF (LS-Only group). All patients had at least 2 years of follow-up. Percutaneous PSF and 3-column osteotomy (3CO) were excluded. Demographics, perioperative details, radiographic spinal deformity measurements, and HRQoL data were analyzed.

RESULTS

Thirty-two patients were matched (LS+Apex: 16; LS: 16) (6 men, 26 women; mean age 63 ± 10 years). Overall, the average values for measures of deformity were as follows: Cobb angle > 40°, sagittal vertical axis (SVA) > 6 cm, pelvic tilt (PT) > 25°, and mismatch between pelvic incidence (PI) and lumbar lordosis (LL) > 15°. There were no significant intergroup differences in preoperative radiographic parameters, although patients in the LS+Apex group had greater Cobb angles and less LL. Patients in the LS+Apex group had significantly more anterior levels fused (4.6 vs 1), longer operative times (859 vs 379 minutes), and longer length of stay (12 vs 7.5 days) (all p < 0.01). For patients in the LS+Apex group, Cobb angle, pelvic tilt (PT), lumbar lordosis (LL), PI-LL (lumbopelvic mismatch), Oswestry Disability Index (ODI) scores, and visual analog scale (VAS) scores for back and leg pain improved significantly (p < 0.05). For patients in the LS-Only group, there were significant improvements in Cobb angle, ODI score, and VAS scores for back and leg pain. The LS+Apex group had better correction of Cobb angles (56% vs 33%, p = 0.02), SVA (43% vs 5%, p = 0.46), LL (62% vs 13%, p = 0.35), and PI-LL (68% vs 33%, p = 0.32). Despite more LS+Apex patients having major complications (56% vs 13%; p = 0.02) and postoperative leg weakness (31% vs 6%, p = 0.07), there were no intergroup differences in 2-year outcomes.

CONCLUSIONS

Long open posterior instrumented fusion with or without multilevel LIF is used to treat a variety of coronal and sagittal adult thoracolumbar deformities. The addition of multilevel LIF to open PSF with L5–S1 interbody support in this small cohort was often used in more severe coronal and/or lumbopelvic sagittal deformities and offered better correction of major Cobb angles, lumbopelvic parameters, and SVA than posterior-only operations. As these advantages came at the expense of more major complications, more leg weakness, greater blood loss, and longer operative times and hospital stays without an improvement in 2-year outcomes, future investigations should aim to more clearly define deformities that warrant the addition of multilevel LIF to open PSF and L5–S1 interbody fusion.

Full access

Michael P. Kelly, Lukas P. Zebala, Han Jo Kim, Daniel M. Sciubba, Justin S. Smith, Christopher I. Shaffrey, Shay Bess, Eric Klineberg, Gregory Mundis Jr., Douglas Burton, Robert Hart, Alex Soroceanu, Frank Schwab, Virginie Lafage and International Spine Study Group

OBJECT

The goal of this study was to examine the effectiveness of preoperative autologous blood donation (PABD) in adult spinal deformity (ASD) surgery.

METHODS

Patients undergoing single-stay ASD reconstructions were identified in a multicenter database. Patients were divided into groups according to PABD (either PABD or NoPABD). Propensity weighting was used to create matched cohorts of PABD and NoPABD patients. Allogeneic (ALLO) exposure, autologous (AUTO) wastage (unused AUTO), and complication rates were compared between groups.

RESULTS

Four hundred twenty-eight patients were identified as meeting eligibility criteria. Sixty patients were treated with PABD, of whom 50 were matched to 50 patients who were not treated with PABD (NoPABD). Nearly one-third of patients in the PABD group (18/60, 30%) did not receive any autologous transfusion and donated blood was wasted. In 6 of these cases (6/60, 10%), patients received ALLO blood transfusions without AUTO. In 9 cases (9/60, 15%), patients received ALLO and AUTO blood transfusions. Overall rates of transfusion of any type were similar between groups (PABD 70% [42/60], NoPABD 75% [275/368], p = 0.438). Major and minor in-hospital complications were similar between groups (Major PABD 10% [6/60], NoPABD 12% [43/368], p = 0.537; Minor PABD 30% [18/60], NoPABD 24% [87/368], p = 0.499). When controlling for potential confounders, PABD patients were more likely to receive some transfusion (OR 15.1, 95% CI 2.1-106.7). No relationship between PABD and ALLO blood exposure was observed, however, refuting the concept that PABD is protective against ALLO blood exposure. In the matched cohorts, PABD patients were more likely to sustain a major perioperative cardiac complication (PABD 8/50 [16%], NoPABD 1/50 [2%], p = 0.046). No differences in rates of infection or wound-healing complications were observed between cohorts.

CONCLUSIONS

Preoperative autologous blood donation was associated with a higher probability of perioperative transfusions of any type in patients with ASD. No protective effect of PABD against ALLO blood exposure was observed, and no risk of perioperative infectious complications was observed in patients exposed to ALLO blood only. The benefit of PABD in patients with ASD remains undefined.

Restricted access

Virginie Lafage, Frank Schwab, Shaleen Vira, Robert Hart, Douglas Burton, Justin S. Smith, Oheneba Boachie-Adjei, Alexis Shelokov, Richard Hostin, Christopher I. Shaffrey, Munish Gupta, Behrooz A. Akbarnia, Shay Bess and Jean-Pierre Farcy

Object

Pedicle subtraction osteotomy (PSO) is a spinal realignment technique that may be used to correct sagittal spinal imbalance. Theoretically, the level and degree of resection via a PSO should impact the degree of sagittal plane correction in the setting of deformity. However, the quantitative effect of PSO level and focal angular change on postoperative spinopelvic parameters has not been well described. The purpose of this study is to analyze the relationship between the level/degree of PSO and changes in global sagittal balance and spinopelvic parameters.

Methods

In this multicenter retrospective study, 70 patients (54 women and 16 men) underwent lumbar PSO surgery for spinal imbalance. Preoperative and postoperative free-standing sagittal radiographs were obtained and analyzed by regional curves (lumbar, thoracic, and thoracolumbar), pelvic parameters (pelvic incidence and pelvic tilt [PT]) and global balance (sagittal vertical axis [SVA] and T-1 spinopelvic inclination). Correlations between PSO parameters (level and degree of change in angle between the 2 adjacent vertebrae) and spinopelvic measurements were analyzed.

Results

Pedicle subtraction osteotomy distribution by level and degree of correction was as follows: L-1 (6 patients, 24°), L-2 (15 patients, 24°), L-3 (29 patients, 25°), and L-4 (20 patients, 22°). There was no significant difference in the focal correction achieved by PSO by level. All patients demonstrated changes in preoperative to postoperative parameters including increased lumbar lordosis (from 20° to 49°, p < 0.001), increased thoracic kyphosis (from 30° to 38°, p < 0.001), decreased SVA and T-1 spinopelvic inclination (from 122 to 34 mm, p < 0.001 and from +3° to −4°, p < 0.001, respectively), and decreased PT (from 31° to 23°, p < 0.001). More caudal PSO was correlated with greater PT reduction (r = −0.410, p < 0.05). No correlation was found between SVA correction and PSO location. The PSO degree was correlated with change in thoracic kyphosis (r = −0.474, p < 0.001), lumbar lordosis (r = 0.667, p < 0.001), sacral slope (r = 0.426, p < 0.001), and PT (r = −0.358, p < 0.005).

Conclusions

The degree of PSO resection correlates more with spinopelvic parameters (lumbar lordosis, thoracic kyphosis, PT, and sacral slope) than PSO level. More importantly, PSO level impacts postoperative PT correction but not SVA.

Full access

Justin S. Smith, Christopher I. Shaffrey, Eric Klineberg, Virginie Lafage, Frank Schwab, Renaud Lafage, Han Jo Kim, Richard Hostin, Gregory M. Mundis Jr., Munish Gupta, Barthelemy Liabaud, Justin K. Scheer, Bassel G. Diebo, Themistocles S. Protopsaltis, Michael P. Kelly, Vedat Deviren, Robert Hart, Doug Burton, Shay Bess and Christopher P. Ames

OBJECTIVE

Although 3-column osteotomy (3CO) can provide powerful alignment correction in adult spinal deformity (ASD), these procedures are complex and associated with high complication rates. The authors' objective was to assess complications associated with ASD surgery that included 3CO based on a prospectively collected multicenter database.

METHODS

This study is a retrospective review of a prospectively collected multicenter consecutive case registry. ASD patients treated with 3CO and eligible for 2-year follow-up were identified from a prospectively collected multicenter ASD database. Early (≤ 6 weeks after surgery) and delayed (> 6 weeks after surgery) complications were collected using standardized forms and on-site coordinators.

RESULTS

Of 106 ASD patients treated with 3CO, 82 (77%; 68 treated with pedicle subtraction osteotomy [PSO] and 14 treated with vertebral column resection [VCR]) had 2-year follow-up (76% women, mean age 60.7 years, previous spine fusion in 80%). The mean number of posterior fusion levels was 12.9, and 17% also had an anterior fusion. A total of 76 early (44 minor, 32 major) and 66 delayed (13 minor, 53 major) complications were reported, with 41 patients (50.0%) and 45 patients (54.9%) affected, respectively. Overall, 64 patients (78.0%) had at least 1 complication, and 50 (61.0%) had at least 1 major complication. The most common complications were rod breakage (31.7%), dural tear (20.7%), radiculopathy (9.8%), motor deficit (9.8%), proximal junctional kyphosis (PJK, 9.8%), pleural effusion (8.5%), and deep wound infection (7.3%). Compared with patients who did not experience early or delayed complications, those who had these complications did not differ significantly with regard to age, sex, body mass index, Charlson Comorbidity Index, American Society of Anesthesiologists score, smoking status, history of previous spine surgery or spine fusion, or whether the 3CO performed was a PSO or VCR (p ≥ 0.06). Twenty-seven (33%) patients had 1–11 reoperations (total of 44 reoperations). The most common indications for reoperation were rod breakage (n = 14), deep wound infection (n = 15), and PJK (n = 6). The 24 patients who did not achieve 2-year follow-up had a mean of 0.85 years of follow-up, and the types of early and delayed complications encountered in these 24 patients were comparable to those encountered in the patients that achieved 2-year follow-up.

CONCLUSIONS

Among 82 ASD patients treated with 3CO, 64 (78.0%) had at least 1 early or delayed complication (57 minor, 85 major). The most common complications were instrumentation failure, dural tear, new neurological deficit, PJK, pleural effusion, and deep wound infection. None of the assessed demographic or surgical parameters were significantly associated with the occurrence of complications. These data may prove useful for surgical planning, patient counseling, and efforts to improve the safety and cost-effectiveness of these procedures.

Full access

Justin S. Smith, Manish Singh, Eric Klineberg, Christopher I. Shaffrey, Virginie Lafage, Frank J. Schwab, Themistocles Protopsaltis, David Ibrahimi, Justin K. Scheer, Gregory Mundis Jr., Munish C. Gupta, Richard Hostin, Vedat Deviren, Khaled Kebaish, Robert Hart, Douglas C. Burton, Shay Bess and Christopher P. Ames

Object

Increased sagittal vertical axis (SVA) correlates strongly with pain and disability for adults with spinal deformity. A subset of patients with sagittal spinopelvic malalignment (SSM) have flatback deformity (pelvic incidence–lumbar lordosis [PI-LL] mismatch > 10°) but remain sagittally compensated with normal SVA. Few data exist for SSM patients with flatback deformity and normal SVA. The authors' objective was to compare baseline disability and treatment outcomes for patients with compensated (SVA < 5 cm and PI-LL mismatch > 10°) and decompensated (SVA > 5 cm) SSM.

Methods

The study was a multicenter, prospective analysis of adults with spinal deformity who consecutively underwent surgical treatment for SSM. Inclusion criteria included age older than 18 years, presence of adult spinal deformity with SSM, plan for surgical treatment, and minimum 1-year follow-up data. Patients with SSM were divided into 2 groups: those with compensated SSM (SVA < 5 cm and PI-LL mismatch > 10°) and those with decompensated SSM (SVA ≥ 5 cm). Baseline and 1-year follow-up radiographic and health-related quality of life (HRQOL) outcomes included Oswestry Disability Index, Short Form–36 scores, and Scoliosis Research Society–22 scores. Percentages of patients achieving minimal clinically important difference (MCID) were also assessed.

Results

A total of 125 patients (27 compensated and 98 decompensated) met inclusion criteria. Compared with patients in the compensated group, patients in the decompensated group were older (62.9 vs 55.1 years; p = 0.004) and had less scoliosis (43° vs 54°; p = 0.002), greater SVA (12.0 cm vs 1.7 cm; p < 0.001), greater PI-LL mismatch (26° vs 20°; p = 0.013), and poorer HRQOL scores (Oswestry Disability Index, Short Form-36 physical component score, Scoliosis Research Society-22 total; p ≤ 0.016). Although these baseline HRQOL differences between the groups reached statistical significance, only the mean difference in Short Form–36 physical component score reached threshold for MCID. Compared with baseline assessment, at 1 year after surgery improvement was noted for patients in both groups for mean SVA (compensated –1.1 cm, decompensated +4.8 cm; p ≤ 0.009), mean PI-LL mismatch (compensated 6°, decompensated 5°; p < 0.001), and all HRQOL measures assessed (p ≤ 0.005). No significant differences were found between the compensated and decompensated groups in the magnitude of HRQOL score improvement or in the percentages of patients achieving MCID for each of the outcome measures assessed.

Conclusions

Decompensated SSM patients with elevated SVA experience significant disability; however, the amount of disability in compensated SSM patients with flatback deformity caused by PI-LL mismatch but normal SVA is underappreciated. Surgical correction of SSM demonstrated similar radiographic and HRQOL score improvements for patients in both groups. Evaluation of SSM should extend beyond measuring SVA. Among patients with concordant pain and disability, PI-LL mismatch must be evaluated for SSM patients and can be considered a primary indication for surgery.

Full access

Justin S. Smith, Ellen Shaffrey, Eric Klineberg, Christopher I. Shaffrey, Virginie Lafage, Frank J. Schwab, Themistocles Protopsaltis, Justin K. Scheer, Gregory M. Mundis Jr., Kai-Ming G. Fu, Munish C. Gupta, Richard Hostin, Vedat Deviren, Khaled Kebaish, Robert Hart, Douglas C. Burton, Breton Line, Shay Bess, Christopher P. Ames and The International Spine Study Group

Object

Improved understanding of rod fracture (RF) following adult spinal deformity (ASD) surgery could prove valuable for surgical planning, patient counseling, and implant design. The objective of this study was to prospectively assess the rates of and risk factors for RF following surgery for ASD.

Methods

This was a prospective, multicenter, consecutive series. Inclusion criteria were ASD, age > 18 years, ≥5 levels posterior instrumented fusion, baseline full-length standing spine radiographs, and either development of RF or full-length standing spine radiographs obtained at least 1 year after surgery that demonstrated lack of RF. ASD was defined as presence of at least one of the following: coronal Cobb angle ≥20°, sagittal vertical axis (SVA) ≥5 cm, pelvic tilt (PT) ≥25°, and thoracic kyphosis ≥60°.

Results

Of 287 patients who otherwise met inclusion criteria, 200 (70%) either demonstrated RF or had radiographic imaging obtained at a minimum of 1 year after surgery showing lack of RF. The patients' mean age was 54.8 ± 15.8 years; 81% were women; 10% were smokers; the mean body mass index (BMI) was 27.1 ± 6.5; the mean number of levels fused was 12.0 ± 3.8; and 50 patients (25%) had a pedicle subtraction osteotomy (PSO). The rod material was cobalt chromium (CC) in 53%, stainless steel (SS), in 26%, or titanium alloy (TA) in 21% of cases; the rod diameters were 5.5 mm (in 68% of cases), 6.0 mm (in 13%), or 6.35 mm (in 19%). RF occurred in 18 cases (9.0%) at a mean of 14.7 months (range 3–27 months); patients without RF had a mean follow-up of 19 months (range 12–24 months). Patients with RF were older (62.3 vs 54.1 years, p = 0.036), had greater BMI (30.6 vs 26.7, p = 0.019), had greater baseline sagittal malalignment (SVA 11.8 vs 5.0 cm, p = 0.001; PT 29.1° vs 21.9°, p = 0.016; and pelvic incidence [PI]–lumbar lordosis [LL] mismatch 29.6° vs 12.0°, p = 0.002), and had greater sagittal alignment correction following surgery (SVA reduction by 9.6 vs 2.8 cm, p < 0.001; and PI-LL mismatch reduction by 26.3° vs 10.9°, p = 0.003). RF occurred in 22.0% of patients with PSO (10 of the 11 fractures occurred adjacent to the PSO level), with rates ranging from 10.0% to 31.6% across centers. CC rods were used in 68% of PSO cases, including all with RF. Smoking, levels fused, and rod diameter did not differ significantly between patients with and without RF (p > 0.05). In cases including a PSO, the rate of RF was significantly higher with CC rods than with TA or SS rods (33% vs 0%, p = 0.010). On multivariate analysis, only PSO was associated with RF (p = 0.001, OR 5.76, 95% CI 2.01–15.8).

Conclusions

Rod fracture occurred in 9.0% of ASD patients and in 22.0% of PSO patients with a minimum of 1-year follow-up. With further follow-up these rates would likely be even higher. There was a substantial range in the rate of RF with PSO across centers, suggesting potential variations in technique that warrant future investigation. Due to higher rates of RF with PSO, alternative instrumentation strategies should be considered for these cases.

Free access

Kristina Bianco, Robert Norton, Frank Schwab, Justin S. Smith, Eric Klineberg, Ibrahim Obeid, Gregory Mundis Jr., Christopher I. Shaffrey, Khaled Kebaish, Richard Hostin, Robert Hart, Munish C. Gupta, Douglas Burton, Christopher Ames, Oheneba Boachie-Adjei, Themistocles S. Protopsaltis and Virginie Lafage

Object

Three-column resection osteotomies (3COs) are commonly performed for sagittal deformity but have high rates of reported complications. Authors of this study aimed to examine the incidence of and intercenter variability in major intraoperative complications (IOCs), major postoperative complications (POCs) up to 6 weeks postsurgery, and overall complications (that is, both IOCs and POCs). They also aimed to investigate the incidence of and intercenter variability in blood loss during 3CO procedures.

Methods

The incidence of IOCs, POCs, and overall complications associated with 3COs were retrospectively determined for the study population and for each of 8 participating surgical centers. The incidence of major blood loss (MBL) over 4 L and the percentage of total blood volume lost were also determined for the study population and each surgical center. Complication rates and blood loss were compared between patients with one and those with two osteotomies, as well as between patients with one thoracic osteotomy (ThO) and those with one lumbar or sacral osteotomy (LSO). Risk factors for developing complications were determined.

Results

Retrospective review of prospectively acquired data for 423 consecutive patients who had undergone 3CO at 8 surgical centers was performed. The incidence of major IOCs, POCs, and overall complications was 7%, 39%, and 42%, respectively, for the study population overall. The most common IOC was spinal cord deficit (2.6%) and the most common POC was unplanned return to the operating room (19.4%). Patients with two osteotomies had more POCs (56% vs 38%, p = 0.04) than the patients with one osteotomy. Those with ThO had more IOCs (16% vs 6%, p = 0.03), POCs (58% vs 34%, p < 0.01), and overall complications (67% vs 37%, p < 0.01) than the patients with LSO. There was significant variation in the incidence of IOCs, POCs, and overall complications among the 8 sites (p < 0.01). The incidence of MBL was 24% for the study population, which varied significantly between sites (p < 0.01). Patients with MBL had a higher risk of IOCs, POCs, and overall complications (OR 2.15, 1.76, and 2.01, respectively). The average percentage of total blood volume lost was 55% for the study population, which also varied among sites (p < 0.01).

Conclusions

Given the complexity of 3COs for spinal deformity, it is important for spine surgeons to understand the risk factors and complication rates associated with these procedures. In this study, the overall incidence of major complications following 3CO procedures was 42%. Risks for developing complications included an older age (> 60 years), two osteotomies, ThO, and MBL.