Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Yakov Gologorsky x
  • Journal of Neurosurgery: Spine x
  • By Author: Gologorsky, Yakov x
Clear All Modify Search
Full access

Yakov Gologorsky, John J. Knightly, John H. Chi and Michael W. Groff

Object

The rates of lumbar spinal fusion operations have increased dramatically over the past 2 decades, and several studies based on administrative databases such as the Nationwide Inpatient Sample (NIS) have suggested that the greatest rise is in the general categories of degenerative disc disease and disc herniation, neither of which is a well-accepted indication for lumbar fusion. The administrative databases classify cases with the International Classification of Disease, Ninth Revision, Clinical Modification (ICD-9-CM). The ICD-9-CM discharge codes are not generated by surgeons but rather are assigned by trained hospital medical coders. It is unclear how accurately they capture the surgeon's indication for fusion. The authors sought to compare the ICD-9-CM code(s) assigned by the medical coder to the surgeon's indication based on a review of the medical chart.

Methods

A retrospective review was undertaken of all lumbar fusions performed at our institution by the department of neurosurgery between 8/1/2011 and 8/31/2013. Based on the authors' review, the indication for fusion for each case was categorized as spondylolisthesis, deformity, tumor, infection, nonpathological fracture, pseudarthrosis, adjacent-level degeneration, stenosis, degenerative disc pathology, or disc herniation. These surgeon diagnoses were compared with the primary ICD-9-CM codes that were submitted to administrative databases.

Results

There were 178 lumbar fusion operations performed for 170 hospital admissions. There were 44 hospitalizations in which fusion was performed for tumor, infection, or nonpathological fracture; the remaining 126 were for degenerative diagnoses. For these degenerative cases, the primary ICD-9-CM diagnosis matched the surgeon's diagnosis in only 61 of 126 degenerative cases (48.4%). When both the primary and all secondary ICD-9-CM diagnoses were considered, the indication for fusion was identified in 100 of 126 cases (79.4%).

Conclusions

Characterizing indications for fusion based solely on primary ICD-9-CM codes extracted from large administrative databases does not accurately reflect the surgeon's indication. While these databases may accurately describe national rates of lumbar fusion surgery, the lack of fidelity in the source codes limits their role in accurately identifying indications for surgery. Studying relationships among indications, complications, and outcomes stratified solely by ICD-9-CM codes is not well founded.

Full access

Yakov Gologorsky, Branko Skovrlj, Jeremy Steinberger, Max Moore, Marc Arginteanu, Frank Moore and Alfred Steinberger

Object

Transforaminal lumbar interbody fusion (TLIF) with segmental pedicular instrumentation is a wellestablished procedure used to treat lumbar spondylosis with or without spondylolisthesis. Available biomechanical and clinical studies that compared unilateral and bilateral constructs have produced conflicting data regarding patient outcomes and hardware complications.

Methods

A prospective cohort study was undertaken by a group of neurosurgeons. They prospectively enrolled 80 patients into either bilateral or unilateral pedicle screw instrumentation groups (40 patients/group). Demographic data collected for each group included sex, age, body mass index, tobacco use, and Workers' Compensation/litigation status. Operative data included segments operated on, number of levels involved, estimated blood loss, length of hospital stay, and perioperative complications. Long-term outcomes (hardware malfunction, wound dehiscence, and pseudarthrosis) were recorded. For all patients, preoperative baseline and 6-month postoperative scores for Medical Outcomes 36-Item Short Form Health Survey (SF-36) outcomes were recorded.

Results

Patient follow-up times ranged from 37 to 63 months (mean 52 months). No patients were lost to follow-up. The patients who underwent unilateral pedicle screw instrumentation (unilateral cohort) were slightly younger than those who underwent bilateral pedicle screw instrumentation (bilateral cohort) (mean age 42 vs 47 years, respectively; p = 0.02). No other significant differences were detected between cohorts with regard to demographic data, mean number of lumbar levels operated on, or distribution of the levels operated on. Estimated blood loss was higher for patients in the bilateral cohort, but length of stay was similar for patients in both cohorts. The incidence of pseudarthrosis was significantly higher among patients in the unilateral cohort (7 patients [17.5%]) than among those in the bilateral cohort (1 patient [2.5%]) (p = 0.02). Wound dehiscence occurred for 1 patient in the unilateral cohort. Reoperation was offered to 8 patients in the unilateral cohort and 1 patient in the bilateral cohort (p = 0.03). The physical component scores of the Medical Outcomes SF-36 outcomes improved significantly for all patients (p < 0.001).

Conclusions

Transforaminal lumbar interbody fusion with either unilateral or bilateral segmental pedicular instrumentation is an effective treatment for lumbar spondylosis. Because patients with unilateral constructs were 7 times more likely to experience pseudarthrosis and require reoperation, TLIF with bilateral constructs might be the biomechanically superior technique.