Browse

You are looking at 1 - 10 of 10 items for

  • By Author: Godzik, Jakub x
Clear All
Restricted access

Jakub Godzik, Jennifer N. Lehrman, Anna G. U. S. Newcomb, Ram Kumar Menon, Alexander C. Whiting, Brian P. Kelly and Laura A. Snyder

OBJECTIVE

Transforaminal lumbar interbody fusion (TLIF) is commonly used for lumbar fusion, such as for foraminal decompression, stabilization, and improving segmental lordosis. Although many options exist, surgical success is contingent on matching design strengths with surgical goals. The goal in the present study was to investigate the effects of an expandable interbody spacer and 2 traditional static spacer designs in terms of stability, compressive stiffness, foraminal height, and segmental lordosis.

METHODS

Standard nondestructive flexibility tests (7.5 N⋅m) were performed on 8 cadaveric lumbar specimens (L3–S1) to assess intervertebral stability of 3 types of TLIF spacers at L4–5 with bilateral posterior screw-rod (PSR) fixation. Stability was determined as range of motion (ROM) in flexion-extension (FE), lateral bending (LB), and axial rotation (AR). Compressive stiffness was determined with axial compressive loading (300 N). Foraminal height, disc height, and segmental lordosis were evaluated using radiographic analysis after controlled PSR compression (170 N). Four conditions were tested in random order: 1) intact, 2) expandable interbody cage with PSR fixation (EC+PSR), 3) static ovoid cage with PSR fixation (SOC+PSR), and 4) static rectangular cage with PSR fixation (SRC+PSR).

RESULTS

All constructs demonstrated greater stability than the intact condition (p < 0.001). No significant differences existed among constructs in ROM (FE, AR, and LB) or compressive stiffness (p ≥ 0.66). The EC+PSR demonstrated significantly greater foraminal height at L4–5 than SRC+PSR (21.1 ± 2.6 mm vs 18.6 ± 1.7 mm, p = 0.009). EC+PSR demonstrated higher anterior disc height than SOC+PSR (14.9 ± 1.9 mm vs 13.6 ± 2.2 mm, p = 0.04) and higher posterior disc height than the intact condition (9.4 ± 1.5 mm vs 7.1 ± 1.0 mm, p = 0.002), SOC+PSR (6.5 ± 1.8 mm, p < 0.001), and SRC+PSR (7.2 ± 1.2 mm, p < 0.001). There were no significant differences in segmental lordosis among SOC+PSR (10.1° ± 2.2°), EC+PSR (8.1° ± 0.5°), and SRC+PSR (11.1° ± 3.0°) (p ≥ 0.06).

CONCLUSIONS

An expandable interbody spacer provided stability, stiffness, and segmental lordosis comparable to those of traditional nonexpandable spacers of different shapes, with increased foraminal height and greater disc height. These results may help inform decisions about which interbody implants will best achieve surgical goals.

Restricted access

Corey T. Walker, S. Harrison Farber, Tyler S. Cole, David S. Xu, Jakub Godzik, Alexander C. Whiting, Cory Hartman, Randall W. Porter, Jay D. Turner and Juan Uribe

OBJECTIVE

Minimally invasive anterolateral retroperitoneal approaches for lumbar interbody arthrodesis have distinct advantages attractive to spine surgeons. Prepsoas or transpsoas trajectories can be employed with differing complication profiles because of the inherent anatomical differences encountered in each approach. The evidence comparing them remains limited because of poor quality data. Here, the authors sought to systematically review the available literature and perform a meta-analysis comparing the two techniques.

METHODS

A systematic review and meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A database search was used to identify eligible studies. Prepsoas and transpsoas studies were compiled, and each study was assessed for inclusion criteria. Complication rates were recorded and compared between approach groups. Studies incorporating an analysis of postoperative subsidence and pseudarthrosis rates were also assessed and compared.

RESULTS

For the prepsoas studies, 20 studies for the complications analysis and 8 studies for the pseudarthrosis outcomes analysis were included. For the transpsoas studies, 39 studies for the complications analysis and 19 studies for the pseudarthrosis outcomes analysis were included. For the complications analysis, 1874 patients treated via the prepsoas approach and 4607 treated with the transpsoas approach were included. In the transpsoas group, there was a higher rate of transient sensory symptoms (21.7% vs 8.7%, p = 0.002), transient hip flexor weakness (19.7% vs 5.7%, p < 0.001), and permanent neurological weakness (2.8% vs 1.0%, p = 0.005). A higher rate of sympathetic nerve injury was seen in the prepsoas group (5.4% vs 0.0%, p = 0.03). Of the nonneurological complications, major vascular injury was significantly higher in the prepsoas approach (1.8% vs 0.4%, p = 0.01). There was no difference in urological or peritoneal/bowel injury, postoperative ileus, or hematomas (all p > 0.05). A higher infection rate was noted for the transpsoas group (3.1% vs 1.1%, p = 0.01). With regard to postoperative fusion outcomes, similar rates of subsidence (12.2% prepsoas vs 13.8% transpsoas, p = 0.78) and pseudarthrosis (9.9% vs 7.5%, respectively, p = 0.57) were seen between the groups at the last follow-up.

CONCLUSIONS

Complication rates vary for the prepsoas and transpsoas approaches owing to the variable retroperitoneal anatomy encountered during surgical dissection. While the risks of a lasting motor deficit and transient sensory disturbances are higher for the transpsoas approach, there is a reciprocal reduction in the risks of major vascular injury and sympathetic nerve injury. These results can facilitate informed decision-making and tailored surgical planning regarding the choice of minimally invasive anterolateral access to the spine.

Restricted access

Corey T. Walker, M. Yashar S. Kalani, Mark E. Oppenlander, Jakub Godzik, Nikolay L. Martirosyan, Robert J. Standerfer and Nicholas Theodore

OBJECTIVE

The authors report a novel paradigm for resection of the disc or dural complex to treat giant calcified transdural herniated thoracic discs, and they describe a technique for the repair of dural defects. These herniated thoracic discs are uncommon, complicated lesions that often require a multidisciplinary team for effective treatment. The intradural component must be removed to effectively decompress the spinal cord. The opening of the friable dura mater, which frequently adheres to the extradural component of the disc, can result in large defects and difficult-to-manage CSF leaks.

METHODS

The authors performed a retrospective study of the technique and outcomes in patients with a transdural herniated disc treated at St. Joseph’s Hospital and Medical Center within a 4-year period between 2012 and 2015.

RESULTS

During the study period, 7 patients (mean age 56.1 years) presented to the department of neurosurgery with clinical symptoms consistent with myeloradiculopathy. In all cases, 2-level corpectomies of the involved levels were combined with circumferential resection of the dura and complete decompression of the spinal cord. The dural defect was repaired with an onlay dural patch, and a large piece of AlloDerm (LifeCell Corp) graft was sewn to close the pleural defect. Every patient had a perioperative lumbar drain placed for CSF diversion. No patient suffered neurological decline related to the surgery, and 3 patients experienced clinically significant improvement in function. Two patients developed an early postoperative CSF leak that required operative revision to oversew the defects.

CONCLUSIONS

This novel technique for decompression of the spinal cord by dural resection for the removal of giant calcified transdural herniated thoracic discs is safe and results in excellent decompression of the spinal cord. The technique becomes necessary when primary repair of the dura is not possible, and it can be used in cases in which the resection of pathology includes the dura.

Full access

Michael P. Kelly, Lawrence G. Lenke, Jakub Godzik, Ferran Pellise, Christopher I. Shaffrey, Justin S. Smith, Stephen J. Lewis, Christopher P. Ames, Leah Y. Carreon, Michael G. Fehlings, Frank Schwab and Adam L. Shimer

OBJECTIVE

The authors conducted a study to compare neurological deficit rates associated with complex adult spinal deformity (ASD) surgery when recorded in retrospective and prospective studies. Retrospective studies may underreport neurological deficits due to selection, detection, and recall biases. Prospective studies are expensive and more difficult to perform, but they likely provide more accurate estimates of new neurological deficit rates.

METHODS

New neurological deficits were recorded in a prospective study of complex ASD surgeries (pSR1) with a defined outcomes measure (decrement in American Spinal Injury Association lower-extremity motor score) for neurological deficits. Using identical inclusion criteria and a subset of participating surgeons, a retrospective study was created (rSR1) and neurological deficit rates were collected. Continuous variables were compared with the Student t-test, with correction for multiple comparisons. Neurological deficit rates were compared using the Mantel-Haenszel method for standardized risks. Statistical significance for the primary outcome measure was p < 0.05.

RESULTS

Overall, 272 patients were enrolled in pSR1 and 207 patients were enrolled in rSR1. Inclusion criteria, defining complex spinal deformities, and exclusion criteria were identical. Sagittal Cobb measurements were higher in pSR1, although sagittal alignment was similar. Preoperative neurological deficit rates were similar in the groups. Three-column osteotomies were more common in pSR1, particularly vertebral column resection. New neurological deficits were more common in pSR1 (pSR1 17.3% [95% CI 12.6–22.2] and rSR1 9.0% [95% CI 5.0–13.0]; p = 0.01). The majority of deficits in both studies were at the nerve root level, and the distribution of level of injury was similar.

CONCLUSIONS

New neurological deficit rates were nearly twice as high in the prospective study than the retrospective study with identical inclusion criteria. These findings validate concerns regarding retrospective cohort studies and confirm the need for and value of carefully designed prospective, observational cohort studies in ASD.

Free access

Jakub Godzik, Vijay M. Ravindra, Wilson Z. Ray, Meic H. Schmidt, Erica F. Bisson and Andrew T. Dailey

OBJECT

The authors’ objectives were to compare the rate of fusion after occipitoatlantoaxial arthrodesis using structural allograft with the fusion rate from using autograft, to evaluate correction of radiographic parameters, and to describe symptom relief with each graft technique.

METHODS

The authors assessed radiological fusion at 6 and 12 months after surgery and obtained radiographic measurements of C1–2 and C2–7 lordotic angles, C2–7 sagittal vertical alignments, and posterior occipitocervical angles at preoperative, postoperative, and final follow-up examinations. Demographic data, intraoperative details, adverse events, and functional outcomes were collected from hospitalization records. Radiological fusion was defined as the presence of bone trabeculation and no movement between the graft and the occiput or C-2 on routine flexion-extension cervical radiographs. Radiographic measurements were obtained from lateral standing radiographs with patients in the neutral position.

RESULTS

At the University of Utah, 28 adult patients underwent occipitoatlantoaxial arthrodesis between 2003 and 2010 using bicortical allograft, and 11 patients were treated using iliac crest autograft. Mean follow-up for all patients was 20 months (range 1–108 months). Of the 27 patients with a minimum of 12 months of follow-up, 18 (95%) of 19 in the allograft group and 8 (100%) of 8 in the autograft group demonstrated evidence of bony fusion shown by imaging. Patients in both groups demonstrated minimal deterioration of sagittal vertical alignment at final follow-up. Operative times were comparable, but patients undergoing occipitocervical fusion with autograft demonstrated greater blood loss (316 ml vs 195 ml). One (9%) of 11 patients suffered a significant complication related to autograft harvesting.

CONCLUSIONS

The use of allograft in occipitocervical fusion allows a high rate of successful arthrodesis yet avoids the potentially significant morbidity and pain associated with autograft harvesting. The safety and effectiveness profile is comparable with previously published rates for posterior C1–2 fusion using allograft.

Full access

Thomas L. Beaumont, Jakub Godzik, Sonika Dahiya and Matthew D. Smyth

The authors report the case of a 14-year-old male with a subependymal giant cell astrocytoma (SEGA) that occurred in the absence of tuberous sclerosis complex (TSC). The patient presented with progressive headache and the sudden onset of nausea and vomiting. Neuroimaging revealed an enhancing left ventricular mass located in the region of the foramen of Monro with significant mass effect and midline shift. The lesion had radiographic characteristics of SEGA; however, the diagnosis remained unclear given the absence of clinical features of TSC. The patient underwent gross-total resection of the tumor with resolution of his symptoms. Although tumor histology was consistent with SEGA, genetic analysis of both germline and tumor DNA revealed no TSC1/2 mutations. Similarly, a comprehensive clinical evaluation failed to reveal any clinical features characteristic of TSC. Few cases of SEGA without clinical or genetic evidence of TSC have been reported. The histogenesis, genetics, and clinical approach to this rare lesion are briefly reviewed.

Free access

Jakub Godzik, Michael P. Kelly, Alireza Radmanesh, David Kim, Terrence F. Holekamp, Matthew D. Smyth, Lawrence G. Lenke, Joshua S. Shimony, Tae Sung Park, Jeffrey Leonard and David D. Limbrick

Object

Chiari malformation Type I (CM-I) is a developmental abnormality often associated with a spinal syrinx. Patients with syringomyelia are known to have an increased risk of scoliosis, yet the influence of specific radiographically demonstrated features on the prevalence of scoliosis remains unclear. The primary objective of the present study was to investigate the relationship of maximum syrinx diameter and tonsillar descent to the presence of scoliosis in patients with CM-I–associated syringomyelia. A secondary objective was to explore the role of craniovertebral junction (CVJ) characteristics as additional risk factors for scoliosis.

Methods

The authors conducted a retrospective review of pediatric patients evaluated for CM-I with syringomyelia at a single institution in the period from 2000 to 2012. Syrinx morphology and CVJ parameters were evaluated with MRI, whereas the presence of scoliosis was determined using standard radiographic criteria. Multiple logistic regression was used to analyze radiological features that were independently associated with scoliosis.

Results

Ninety-two patients with CM-I and syringomyelia were identified. The mean age was 10.5 ± 5 years. Thirty-five (38%) of 92 patients had spine deformity; 23 (66%) of these 35 patients were referred primarily for deformity, and 12 (34%) were diagnosed with deformity during workup for other symptoms. Multiple regression analysis revealed maximum syrinx diameter > 6 mm (OR 12.1, 95% CI 3.63–40.57, p < 0.001) and moderate (5–12 mm) rather than severe (> 12 mm) tonsillar herniation (OR 7.64, 95% CI 2.3–25.31, p = 0.001) as significant predictors of spine deformity when controlling for age, sex, and syrinx location.

Conclusions

The current study further elucidates the association between CM-I and spinal deformity by defining specific radiographic characteristics associated with the presence of scoliosis. Specifically, patients presenting with larger maximum syrinx diameters (> 6 mm) have an increased risk of scoliosis.