Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Adam Kanter x
  • By Author: Gerszten, Peter C. x
Clear All Modify Search
Restricted access

Matthew J. Tormenti, Matthew B. Maserati, Christopher M. Bonfield, Peter C. Gerszten, John J. Moossy, Adam S. Kanter, Richard M. Spiro and David O. Okonkwo


Since its original description in 1982, transforaminal lumbar interbody fusion (TLIF) has grown in popularity as a means for achieving circumferential fusion. The authors sought to define the perioperative complication rates of the TLIF procedure at a large academic medical center.


For all eligible patients from a consecutive series of 531 TLIF procedures, the institution's complication database and the medical record were reviewed to identify complications. Medical, nonprocedure-related complications such as myocardial infarction and pulmonary embolism were excluded due to inconsistency in the recording of these complications in the database. Rates were calculated for each type of complication, and subgroup analysis was performed to investigate the effect of previous lumbar surgery, and of multilevel versus single-level interbody fusion on complication rates. Odds ratios were calculated and evaluated using chi-square analysis.


Five hundred thirty-one patients underwent a TLIF procedure during the study period. Two hundred forty-four patients (46%) had undergone a previous lumbar operation. Interbody fusion was performed at 1 level in 317 patients, at 2 levels in 188 patients, at 3 levels in 24 patients, and at 4 levels in 2 patients. One hundred thirty-five patients (25.4%) had at least one procedure-related complication. The most common complications were durotomy (14.3% of patients) and infection (3.8% of patients). Symptomatic screw misplacement (2.1% of patients) and interbody cage migration (1.8% of patients) were less common complications. The overall complication rate was greater in those patients who had undergone a previous operation (OR 1.75, 95% CI 1.18–2.59; p < 0.01) and in those who had multilevel surgery (OR 1.54, 95 % CI 1.04–2.28; p = 0.03), and the incidence of durotomy was higher in patients who had a previous operation (OR 1.75, 95% CI 1.07–2.87; p = 0.03). These differences were statistically significant. Durotomy also occurred more frequently in patients who had multilevel interbody fusion (OR 1.49, 95% CI 0.92–2.43; p = 0.13). A trend toward higher infection rates in those patients who underwent multilevel interbody fusion was observed (OR 1.5, 95% CI 0.62–3.68; p = 0.49), but this was not statistically significant. Infection rates did not differ between revision and first-time surgeries.


Transforaminal lumbar interbody fusion has gained widespread popularity as a procedure for achieving arthrodesis in the lumbar spine. Complications occurred more often in patients undergoing revision surgery or multilevel interbody fusion. Durotomy and infection were the most common complications in this series.

Free access

Nitin Agarwal, Prateek Agarwal, Ashley Querry, Anna Mazurkiewicz, Zachary J. Tempel, Robert M. Friedlander, Peter C. Gerszten, D. Kojo Hamilton, David O. Okonkwo and Adam S. Kanter


Previous studies have demonstrated the efficacy of infection prevention protocols in reducing infection rates. This study investigated the effects of the development and implementation of an infection prevention protocol that was augmented by increased physician awareness of spinal fusion surgical site infection (SSI) rates and resultant cost savings.


A cohort clinical investigation over a 10-year period was performed at a single tertiary spine care academic institution. Preoperative infection control measures (chlorohexidine gluconate bathing, Staphylococcus aureus nasal screening and decolonization) followed by postoperative infection control measures (surgical dressing care) were implemented. After the implementation of these infection control measures, an awareness intervention was instituted in which all attending and resident neurosurgeons were informed of their individual, independently adjudicated spinal fusion surgery infection rates and rankings among their peers. During the course of these interventions, the overall infection rate was tracked as well as the rates for those neurosurgeons who complied with the preoperative and postoperative infection control measures (protocol group) and those who did not (control group).


With the implementation of postoperative surgical dressing infection control measures and physician awareness, the postoperative spine surgery infection rate decreased by 45% from 3.8% to 2.1% (risk ratio 0.55; 95% CI 0.32–0.93; p = 0.03) for those in the protocol cohort, resulting in an estimated annual cost savings of $291,000. This reduction in infection rate was not observed for neurosurgeons in the control group, although the overall infection rate among all neurosurgeons decreased by 54% from 3.3% to 1.5% (risk ratio 0.46; 95% CI 0.28–0.73; p = 0.0013).


A novel paradigm for spine surgery infection control combined with physician awareness methods resulted in significantly decreased SSI rates and an associated cost reduction. Thus, information sharing and physician engagement as a supplement to formal infection control measures result in improvements in surgical outcomes and costs.

Full access

The effect of vancomycin powder on human dural fibroblast culture and its implications for dural repair during spine surgery

Presented at the 2016 AANS/CNS Joint Section on Disorders of the Spine and Peripheral Nerves

Ezequiel Goldschmidt, Jorge Rasmussen, Joseph D. Chabot, Gurpreet Gandhoke, Emilia Luzzi, Lina Merlotti, Romina Proni, Mónica Loresi, D. Kojo Hamilton, David O. Okonkwo, Adam S. Kanter and Peter C. Gerszten


Surgical site infections (SSIs) are a major source of morbidity after spinal surgery. Several recent studies have described the finding that applying vancomycin powder to the surgical bed may reduce the incidence of SSI. However, applying vancomycin in high concentrations has been shown in vitro to inhibit osteoblast proliferation and to induce cell death. Vancomycin may have a deleterious effect on dural healing after repair of an intentional or unintentional durotomy. This study was therefore undertaken to assess the effect of different concentrations of vancomycin on a human dura mater cell culture.


Human dura intended for disposal after decompressive craniectomy was harvested. Explant primary cultures and subcultures were subsequently performed. Cells were characterized through common staining and immunohistochemistry. A growth curve was performed to assess the effect of different concentrations of vancomycin (40, 400, and 4000 μg/ml) on cell count. The effect of vancomycin on cellular shape, intercellular arrangement, and viability was also evaluated.


All dural tissue samples successfully developed into fusiform cells, demonstrating pseudopod projections and spindle formation. The cells demonstrated vimentin positivity and also had typical features of fibroblasts. When applied to the cultures, the highest dose of vancomycin induced generalized cell death within 24 hours. The mean (± SD) cell counts for control, 40, 400, and 4000 μg/ml were 38.72 ± 15.93, 36.28 ± 22.87, 19.48 ± 6.53, and 4.07 ± 9.66, respectively (p < 0.0001, ANOVA). Compared with controls, vancomycin-exposed cells histologically demonstrated a smaller cytoplasm and decreased pseudopodia formation resulting in the inhibition of normal spindle intercellular arrangement.


When vancomycin powder is applied locally, dural cells are exposed to a concentration several times greater than when delivered systemically. In this in vitro model, vancomycin induced dural cell death, inhibited growth, and altered cellular morphology in a concentration-dependent fashion. Defining a safe vancomycin concentration that is both bactericidal and also does not inhibit normal dural healing is necessary.

Restricted access

Oral Presentations

2010 AANS Annual Meeting Philadelphia, Pennsylvania May 1–5, 2010