Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Georg Widhalm x
  • By Author: Furtner, Julia x
Clear All Modify Search
Free access

Aygül Mert, Barbara Kiesel, Adelheid Wöhrer, Mauricio Martínez-Moreno, Georgi Minchev, Julia Furtner, Engelbert Knosp, Stefan Wolfsberger and Georg Widhalm

OBJECT

Surgery of suspected low-grade gliomas (LGGs) poses a special challenge for neurosurgeons due to their diffusely infiltrative growth and histopathological heterogeneity. Consequently, neuronavigation with multimodality imaging data, such as structural and metabolic data, fiber tracking, and 3D brain visualization, has been proposed to optimize surgery. However, currently no standardized protocol has been established for multimodality imaging data in modern glioma surgery. The aim of this study was therefore to define a specific protocol for multimodality imaging and navigation for suspected LGG.

METHODS

Fifty-one patients who underwent surgery for a diffusely infiltrating glioma with nonsignificant contrast enhancement on MRI and available multimodality imaging data were included. In the first 40 patients with glioma, the authors retrospectively reviewed the imaging data, including structural MRI (contrast-enhanced T1-weighted, T2-weighted, and FLAIR sequences), metabolic images derived from PET, or MR spectroscopy chemical shift imaging, fiber tracking, and 3D brain surface/vessel visualization, to define standardized image settings and specific indications for each imaging modality. The feasibility and surgical relevance of this new protocol was subsequently prospectively investigated during surgery with the assistance of an advanced electromagnetic navigation system in the remaining 11 patients. Furthermore, specific surgical outcome parameters, including the extent of resection, histological analysis of the metabolic hotspot, presence of a new postoperative neurological deficit, and intraoperative accuracy of 3D brain visualization models, were assessed in each of these patients.

RESULTS

After reviewing these first 40 cases of glioma, the authors defined a specific protocol with standardized image settings and specific indications that allows for optimal and simultaneous visualization of structural and metabolic data, fiber tracking, and 3D brain visualization. This new protocol was feasible and was estimated to be surgically relevant during navigation-guided surgery in all 11 patients. According to the authors' predefined surgical outcome parameters, they observed a complete resection in all resectable gliomas (n = 5) by using contour visualization with T2-weighted or FLAIR images. Additionally, tumor tissue derived from the metabolic hotspot showed the presence of malignant tissue in all WHO Grade III or IV gliomas (n = 5). Moreover, no permanent postoperative neurological deficits occurred in any of these patients, and fiber tracking and/or intraoperative monitoring were applied during surgery in the vast majority of cases (n = 10). Furthermore, the authors found a significant intraoperative topographical correlation of 3D brain surface and vessel models with gyral anatomy and superficial vessels. Finally, real-time navigation with multimodality imaging data using the advanced electromagnetic navigation system was found to be useful for precise guidance to surgical targets, such as the tumor margin or the metabolic hotspot.

CONCLUSIONS

In this study, the authors defined a specific protocol for multimodality imaging data in suspected LGGs, and they propose the application of this new protocol for advanced navigation-guided procedures optimally in conjunction with continuous electromagnetic instrument tracking to optimize glioma surgery.

Free access

Barbara Kiesel, Matthias Millesi, Adelheid Woehrer, Julia Furtner, Anahita Bavand, Thomas Roetzer, Mario Mischkulnig, Stefan Wolfsberger, Matthias Preusser, Engelbert Knosp and Georg Widhalm

OBJECTIVE

Stereotactic needle biopsies are usually performed for histopathological confirmation of intracranial lymphomas to guide adequate treatment. During biopsy, intraoperative histopathology is an effective tool to avoid acquisition of nondiagnostic samples. In the last years, 5-aminolevulinic acid (5-ALA)–induced fluorescence has been increasingly used for visualization of diagnostic brain tumor tissue during stereotactic biopsies. Recently, visible fluorescence was reported in the first cases of intracranial lymphomas as well. The aim of this study is thus to investigate the technical and clinical utility of 5-ALA–induced fluorescence in a large series of stereotactic biopsies for intracranial lymphoma.

METHODS

This prospective study recruited adult patients who underwent frameless stereotactic needle biopsy for a radiologically suspected intracranial lymphoma after oral 5-ALA administration. During biopsy, samples from the tumor region were collected for histopathological analysis, and presence of fluorescence (strong, vague, or no fluorescence) was assessed with a modified neurosurgical microscope. In tumors with available biopsy samples from at least 2 different regions the intratumoral fluorescence homogeneity was additionally investigated. Furthermore, the influence of potential preoperative corticosteroid treatment or immunosuppression on fluorescence was analyzed. Histopathological tumor diagnosis was established and all collected biopsy samples were screened for diagnostic lymphoma tissue.

RESULTS

The final study cohort included 41 patients with intracranial lymphoma. Stereotactic biopsies with assistance of 5-ALA were technically feasible in all cases. Strong fluorescence was found as maximum level in 30 patients (75%), vague fluorescence in 2 patients (4%), and no visible fluorescence in 9 patients (21%). In 28 cases, samples were obtained from at least 2 different tumor regions; homogenous intratumoral fluorescence was found in 16 of those cases (57%) and inhomogeneous intratumoral fluorescence in 12 (43%). According to histopathological analysis, all samples with strong or vague fluorescence contained diagnostic lymphoma tissue, resulting in a positive predictive value of 100%. Analysis showed no influence of preoperative corticosteroids or immunosuppression on fluorescence.

CONCLUSIONS

The data obtained in this study demonstrate the technical and clinical utility of 5-ALA–induced fluorescence in stereotactic biopsies of intracranial lymphomas. Thus, 5-ALA can serve as a useful tool to select patients not requiring intraoperative histopathology, and its application should markedly reduce operation time and related costs in the future.