Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Christopher Michael x
  • Journal of Neurosurgery: Spine x
  • By Author: Fisher, Charles G. x
Clear All Modify Search
Restricted access

Christopher S. Bailey, Charles G. Fisher, Michael C. Boyd and Marcel F. S. Dvorak

✓ The purpose of this case report is to demonstrate that an en bloc resection with negative surgical margins can be successfully achieved in a case of a seemingly unresectable C-2 chordoma if appropriate preoperative staging and planning are performed. The management of chordomas is controversial and challenging because of their location and often large size at presentation. Because chordomas are malignant and will aggressively recur locally if intralesional resection is conducted, wide or true en bloc resection is generally recommended. The literature indicates, however, that surgeons are reluctant to perform wide or even marginal resections because of the lesion’s complex surrounding anatomy and the risk of significant neurological compromise when a tumor abuts the dura mater or neural tissues. In this report the authors outline the successful en bloc resection of a large C1–3 chordoma and discuss the importance of preoperative staging and planning.

Full access

Christopher C. Gillis, John T. Street, Michael C. Boyd and Charles G. Fisher

A novel method of spinopelvic ring reconstruction after partial sacrectomy for a chondrosarcoma is described. Chondrosarcoma is one of the most common primary malignant bone tumors, and en bloc resection is the mainstay of treatment. Involvement of the pelvis as well as the sacrum and lumbar spine can result in a technically difficult challenge for en bloc resection and for achievement of appropriate load-bearing reconstruction.

After en bloc resection in their patient, the authors achieved reconstruction with a rod and screw construct including vascularized fibula graft as the main strut from the lumbar spine to the pelvis. Additionally, a cadaveric allograft strut was used as an adjunct for the pelvic ring. This is similar to a modified Galveston technique with vascularized fibula in place of the Galveston rods. The vascularized fibula provided appropriate biomechanical support, allowing the patient to return to independent ambulation. There was no tumor recurrence; neurological status remained stable; and the allograft construct integrated well and even increased in size on CT scans and radiographs in the course of a follow-up longer than 7 years.

Restricted access

Charles G. Fisher, Vic Sahajpal, Ory Keynan, Michael Boyd, Douglas Graeb, Christopher Bailey, Kostas Panagiotopoulos and Marcel F. Dvorak


The authors evaluated the accuracy of placement and safety of pedicle screws in the treatment of unstable thoracic spine fractures.


Patients with unstable fractures between T-1 and T-10, which had been treated with pedicle screw (PS) placement by one of five spine surgeons at a referral center were included in a prospective cohort study. Postoperative computed tomography scans were obtained using 3-mm axial cuts with sagittal reconstructions. Three independent reviewers (C.B., V.S., and D.G.) assessed PS position using a validated grading scale. Comparison of failure rates among cases grouped by selected baseline variables were performed using Pearson chi-square tests. Independent peri- and postoperative surveillance for local and general complications was performed to assess safety.

Twenty-three patients with unstable thoracic fractures treated with 201 thoracic PSs were analyzed. Only PSs located between T-1 and T-12 were studied, with the majority of screws placed between T-5 and T-10. Of the 201 thoracic PSs, 133 (66.2%) were fully contained within the pedicle wall. The remaining 68 screws (33.8%) violated the pedicle wall. Of these, 36 (52.9%) were lateral, 27 (39.7%) were medial, and five (7.4%) were anterior perforations. No superior, inferior, anteromedial, or anterolateral perforations were found. When local anatomy and the clinical safety of screws were considered, 98.5% (198 of 201) of the screws were probably in an acceptable position. No baseline variables influenced the incidence of perforations. There were no adverse neurological, vascular, or visceral injuries detected intraoperatively or postoperatively.


In the vast majority of cases, PSs can be placed in an acceptable and safe position by fellowship-trained spine surgeons when treating unstable thoracic spine fractures. However, an unacceptable screw position can occur.

Restricted access

Christopher S. Bailey, Marcel F. Dvorak, Kenneth C. Thomas, Michael C. Boyd, Scott Paquett, Brian K. Kwon, John France, Kevin R. Gurr, Stewart I. Bailey and Charles G. Fisher


The authors compared the outcome of patients with thoracolumbar burst fractures treated with and without a thoracolumbosacral orthosis (TLSO).


As of June 2002, all consecutive patients satisfying the following inclusion criteria were considered eligible for this study: 1) the presence of an AO Classification Type A3 burst fractures between T-11 and L-3, 2) skeletal maturity and age < 60 years, 3) admission within 72 hours of injury, 4) initial kyphotic deformity < 35°, and 5) no neurological deficit. The study was designed as a multicenter prospective randomized clinical equivalence trial. The primary outcome measure was the score based on the Roland-Morris Disability Questionnaire assessed at 3 months postinjury. Secondary outcomes are assessed until 2 years of follow-up have been reached, and these domains included pain, functional outcome and generic health-related quality of life, sagittal alignment, length of hospital stay, and complications. Patients in whom no orthotic was used were encouraged to ambulate immediately following randomization, maintaining “neutral spinal alignment” for 8 weeks. The patients in the TLSO group began being weaned from the brace at 8 weeks over a 2-week period.


Sixty-nine patients were followed to the primary outcome time point, and 47 were followed for up to 1 year. No significant difference was found between treatment groups for any outcome measure at any stage in the follow-up period. There were 4 failures requiring surgical intervention, 3 in the TLSO group and 1 in the non-TLSO group.


This interim analysis found equivalence between treatment with a TLSO and no orthosis for thoracolumbar AO Type A3 burst fractures. The influence of a brace on early pain control and function and on long-term 1- and 2-year outcomes remains to be determined. However, the authors contend that a thoracolumbar burst fracture, in exclusion of an associated posterior ligamentous complex injury, is inherently a very stable injury and may not require a brace.

Restricted access

Clinical outcomes research in spine surgery: what are appropriate follow-up times?

Presented at the 2018 AANS/CNS Joint Section on Disorders of the Spine and Peripheral Nerves

Oliver G. S. Ayling, Tamir Ailon, Greg McIntosh, Alex Soroceanu, Hamilton Hall, Andrew Nataraj, Christopher S. Bailey, Sean Christie, Alexandra Stratton, Henry Ahn, Michael Johnson, Jerome Paquet, Kenneth Thomas, Neil Manson, Y. Raja Rampersaud and Charles G. Fisher


There has been a generic dictum in spine and musculoskeletal clinical research that a minimum 2-year follow-up is necessary for patient-reported outcomes (PROs) to adequately assess the therapeutic effect of surgery; however, the rationale for this duration is not evidence based. The purpose of this study was to determine the follow-up time necessary to ensure that the effectiveness of a lumbar surgical intervention is adequately captured for three lumbar pathologies and three common PROs.


Using the different PROs of pain, physical function, and mental quality of life from the Canadian Spine Outcomes and Research Network (CSORN) prospective database, the authors assessed the time course to the recovery plateau following lumbar spine surgery for lumbar disc herniation, degenerative spondylolisthesis, and spinal stenosis. One-way ANOVA with post hoc testing was used to compare scores on the following standardized PRO measures at baseline and 3, 12, and 24 months postoperatively: Disability Scale (DS), visual analog scale (VAS) for leg and back pain, and SF-12 Mental Component Summary (MCS) and Physical Component Summary (PCS).


Significant differences for all spine pathologies and specific PROs were found with one-way ANOVA (p < 0.0001). The time to plateaued recovery after surgery for lumbar disc herniation (661 patients), lumbar stenosis (913 patients), and lumbar spondylolisthesis (563 patients) followed the same course for the following PRO measures: VAS for back and leg pain, 3 months; DS, 12 months; PCS, 12 months; and MCS, 3 months. Beyond these time points, no further significant improvements in PROs were seen. Patients with degenerative spondylolisthesis or spinal stenosis who had undergone fusion surgery plateaued at 12 months on the DS and PCS, compared to 3 months in those who had not undergone fusion.


Specific health dimensions follow distinctly different recovery plateaus, indicating that a 2-year postoperative follow-up is not required for all PROs to accurately assess the treatment effect of lumbar spinal surgery. Ultimately, the clinical research question should dictate the follow-up time and the outcome measure utilized; however, there is now evidence to guide the specific duration of follow-up for pain, physical function, and mental quality of life dimensions.

Restricted access

James S. Harrop, Alexander R. Vaccaro, R. John Hurlbert, Jared T. Wilsey, Eli M. Baron, Christopher I. Shaffrey, Charles G. Fisher, Marcel F. Dvorak, F. C. Öner, Kirkham B. Wood, Neel Anand, D. Greg Anderson, Moe R. Lim, Joon Y. Lee, Christopher M. Bono, Paul M. Arnold, Y. Raja Rampersaud, Michael G. Fehlings and The Spine Trauma Study Group


A new classification and treatment algorithm for thoracolumbar injuries was recently introduced by Vaccaro and colleagues in 2005. A thoracolumbar injury severity scale (TLISS) was proposed for grading and guiding treatment for these injuries. The scale is based on the following: 1) the mechanism of injury; 2) the integrity of the posterior ligamentous complex (PLC); and 3) the patient’s neurological status. The reliability and validity of assessing injury mechanism and the integrity of the PLC was assessed.


Forty-eight spine surgeons, consisting of neurosurgeons and orthopedic surgeons, reviewed 56 clinical thoracolumbar injury case histories. Each was classified and scored to determine treatment recommendations according to a novel classification system. After 3 months the case histories were reordered and the physicians repeated the exercise. Validity of this classification was good among reviewers; the vast majority (> 90%) agreed with the system’s treatment recommendations. Surgeons were unclear as to a cogent description of PLC disruption and fracture mechanism.


The TLISS demonstrated acceptable reliability in terms of intra- and interobserver agreement on the algorithm’s treatment recommendations. Replacing injury mechanism with a description of injury morphology and better definition of PLC injury will improve inter- and intraobserver reliability of this injury classification system.