Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Zhou Feng x
  • By Author: Feng, Hua x
Clear All Modify Search
Full access

Qiang Tan, Qianwei Chen, Yin Niu, Zhou Feng, Lin Li, Yihao Tao, Jun Tang, Liming Yang, Jing Guo, Hua Feng, Gang Zhu and Zhi Chen

OBJECTIVE

Intracerebral hemorrhage (ICH) is associated with a high rate of mortality and severe disability, while fibrinolysis for ICH evacuation is a possible treatment. However, reported adverse effects can counteract the benefits of fibrinolysis and limit the use of tissue-type plasminogen activator (tPA). Identifying appropriate fibrinolytics is still needed. Therefore, the authors here compared the use of urokinase-type plasminogen activator (uPA), an alternate thrombolytic, with that of tPA in a preclinical study.

METHODS

Intracerebral hemorrhage was induced in adult male Sprague-Dawley rats by injecting autologous blood into the caudate, followed by intraclot fibrinolysis without drainage. Rats were randomized to receive uPA, tPA, or saline within the clot. Hematoma and perihematomal edema, brain water content, Evans blue fluorescence and neurological scores, matrix metalloproteinases (MMPs), MMP mRNA, blood-brain barrier (BBB) tight junction proteins, and nuclear factor–κB (NF-κB) activation were measured to evaluate the effects of these 2 drugs in ICH.

RESULTS

In comparison with tPA, uPA better ameliorated brain edema and promoted an improved outcome after ICH. In addition, uPA therapy more effectively upregulated BBB tight junction protein expression, which was partly attributed to the different effects of uPA and tPA on the regulation of MMPs and its related mRNA expression following ICH.

CONCLUSIONS

This study provided evidence supporting the use of uPA for fibrinolytic therapy after ICH. Large animal experiments and clinical trials are required to further explore the efficacy and safety of uPA in ICH fibrinolysis.

Restricted access

Rong Hu, Jianjun Zhou, Chunxia Luo, Jiangkai Lin, Xianrong Wang, Xiaoguang Li, Xiuwu Bian, Yunqing Li, Qi Wan, Yanbing Yu and Hua Feng

Object

A glial scar is thought to be responsible for halting neuroregeneration following spinal cord injury (SCI). However, little quantitative evidence has been provided to show the relationship of a glial scar and axonal regrowth after injury.

Methods

In this study performed in rats and dogs, a traumatic SCI model was made using a weight-drop injury device, and tissue sections were stained with H & E for immunohistochemical analysis. The function and behavior of model animals were tested using electrophysiological recording and the Basso-Beattie-Bresnahan Locomotor Rating Scale, respectively. The cavity in the spinal cord after SCI in dogs was observed using MR imaging.

Results

The morphological results showed that the formation of an astroglial scar was defined at 4 weeks after SCI. While regenerative axons reached the vicinity of the lesion site, the glial scar blocked the extension of regrown axons. In agreement with these findings, the electrophysiological, behavioral, and in vivo MR imaging tests showed that functional recovery reached a plateau at 4 weeks after SCI. The thickness of the glial scars in the injured rat spinal cords was also measured. The mean thickness of the glial scar rostral and caudal to the lesion cavity was 107.00 ± 20.12 μm; laterally it was 69.92 ± 15.12 μm.

Conclusions

These results provide comprehensive evidence indicating that the formation of a glial scar inhibits axonal regeneration at 4 weeks after SCI. This study reveals a critical time window of postinjury recovery and a detailed spatial orientation of glial scar, which would provide an important basis for the development of therapeutic strategy for glial scar ablation.