Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: Christopher Michael x
  • Neurosurgical Focus x
  • By Author: Fehlings, Michael G. x
Clear All Modify Search
Free access

Christopher Paul O'Boynick, Mark F. Kurd, Bruce V. Darden II, Alexander R. Vaccaro and Michael G. Fehlings

The understanding of the optimal surgical timing for stabilization in thoracolumbar fractures is severely limited. Thoracolumbar spine fractures can be devastating injuries and are often associated with significant morbidity and mortality. The role of early surgical stabilization (within 48–72 hours of injury) as a vehicle to improve outcomes in these patients has generated significant interest. Goals of early stabilization include improved neurological recovery, faster pulmonary recovery, improved pain control, and decreased health care costs. Opponents cite the potential for increased bleeding, hypotension, and the risk of further cord injury as a few factors that weigh against early stabilization. The concept of spinal cord injury and its relationship to surgical timing remains in question. However, when neurological outcomes are eliminated from the equation, certain measures have shown positive influences from prompt surgical fixation.

Early fixation of thoracolumbar spine fractures can significantly decrease the duration of hospital stay and the number of days in the intensive care unit. Additionally, prompt stabilization can reduce rates of pulmonary complications. This includes decreased rates of pneumonia and fewer days on ventilator support. Cost analysis revealed as much as $80,000 in savings per patient with early stabilization. All of these benefits come without an increase in morbidity or evidence of increased mortality. In addition, there is no evidence that early stabilization has any ill effect on the injured or uninjured spinal cord. Based on the existing data, early fixation of thoracolumbar fractures has been linked with positive outcomes without clear evidence of negative impacts on the patient's neurological status, associated morbidities, or mortality. These procedures can be viewed as “damage control” and may consist of simple posterior instrumentation or open reductions with internal fixation as indicated. Based on the current literature it is advisable to proceed with early surgical stabilization of thoracolumbar fractures in a well-resuscitated patient, unless extenuating medical conditions would prevent it.

Free access

George M. Ghobrial, Christopher M. Maulucci, Mitchell Maltenfort, Richard T. Dalyai, Alexander R. Vaccaro, Michael G. Fehlings, John Street, Paul M. Arnold and James S. Harrop


Thoracolumbar spine injuries are commonly encountered in patients with trauma, accounting for almost 90% of all spinal fractures. Thoracolumbar burst fractures comprise a high percentage of these traumatic fractures (45%), and approximately half of the patients with this injury pattern are neurologically intact. However, a debate over complication rates associated with operative versus nonoperative management of various thoracolumbar fracture morphologies is ongoing, particularly concerning those patients presenting without a neurological deficit.


A MEDLINE search for pertinent literature published between 1966 and December 2013 was conducted by 2 authors (G.G. and R.D.), who used 2 broad search terms to maximize the initial pool of manuscripts for screening. These terms were “operative lumbar spine adverse events” and “nonoperative lumbar spine adverse events.”


In an advanced MEDLINE search of the term “operative lumbar spine adverse events” on January 8, 2014, 1459 results were obtained. In a search of “nonoperative lumbar spine adverse events,” 150 results were obtained. After a review of all abstracts for relevance to traumatic thoracolumbar spinal injuries, 62 abstracts were reviewed for the “operative” group and 21 abstracts were reviewed for the “nonoperative” group. A total of 14 manuscripts that met inclusion criteria for the operative group and 5 manuscripts that met criteria for the nonoperative group were included.

There were a total of 919 and 436 patients in the operative and nonoperative treatment groups, respectively. There were no statistically significant differences between the groups with respect to age, sex, and length of stay. The mean ages were 43.17 years in the operative and 34.68 years in the nonoperative groups. The majority of patients in both groups were Frankel Grade E (342 and 319 in operative and nonoperative groups, respectively). Among the studies that reported the data, the mean length of stay was 14 days in the operative group and 20.75 in the nonoperative group.

The incidence of all complications in the operative and nonoperative groups was 300 (32.6%) and 21 (4.8%), respectively (p = 0.1065). There was no significant difference between the 2 groups with respect to the incidence of pulmonary, thromboembolic, cardiac, and gastrointestinal complications. However, the incidence of infections (pneumonia, urinary tract infection, wound infection, and sepsis) was significantly higher in the operative group (p = 0.000875). The incidence of instrumentation failure and need for revision surgery was 4.35% (40 of 919), a significant morbidity, and an event unique to the operative category (p = 0.00396).


Due to the limited number of high-quality studies, conclusions related to complication rates of operative and nonoperative management of thoracolumbar traumatic injuries cannot be definitively made. Further prospective, randomized studies of operative versus nonoperative management of thoracolumbar and lumbar spine trauma, with standardized definitions of complications and matched patient cohorts, will aid in properly defining the risk-benefit ratio of surgery for thoracolumbar spine fractures.