Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Christopher Michael x
  • Journal of Neurosurgery x
  • By Author: Fahlbusch, Rudolf x
  • By Author: Buchfelder, Michael x
  • By Author: Nimsky, Christopher x
Clear All Modify Search
Restricted access

Rudolf Fahlbusch, Oliver Ganslandt, Michael Buchfelder, Werner Schott and Christopher Nimsky

Object. The aim of this study was to evaluate whether intraoperative magnetic resonance (MR) imaging can increase the efficacy of transsphenoidal microsurgery, primarily in non—hormone-secreting intra- and suprasellar pituitary macroadenomas.

Methods. Intraoperative imaging was performed using a 0.2-tesla MR imager, which was located in a specially designed operating room. The patient was placed supine on the sliding table of the MR imager, with the head placed near the 5-gauss line. A standard flexible coil was placed around the patient's forehead. Microsurgery was performed using MR-compatible instruments. Image acquisition was started after the sliding table had been moved into the center of the magnet. Coronal and sagittal T1-weighted images each required over 8 minutes to acquire, and T2-weighted images were obtained optionally. To assess the reliability of intraoperative evaluation of tumor resection, the intraoperative findings were compared with those on conventional postoperative 1.5-tesla MR images, which were obtained 2 to 3 months after surgery.

Among 44 patients with large intra- and suprasellar pituitary adenomas that were mainly hormonally inactive, intraoperative MR imaging allowed an ultra-early evaluation of tumor resection in 73% of cases; such an evaluation is normally only possible 2 to 3 months after surgery. A second intraoperative examination of 24 patients for suspected tumor remnants led to additional resection in 15 patients (34%).

Conclusions. Intraoperative MR imaging undoubtedly offers the option of a second look within the same surgical procedure, if incomplete tumor resection is suspected. Thus, the rate of procedures during which complete tumor removal is achieved can be improved. Furthermore, additional treatments for those patients in whom tumor removal was incomplete can be planned at an early stage, namely just after surgery.

Restricted access

Sven Berkmann, Sven Schlaffer, Christopher Nimsky, Rudolf Fahlbusch and Michael Buchfelder


The loss of anatomical landmarks, frequently invasive tumor growth, and tissue changes make transsphenoidal reoperation of nonfunctioning pituitary adenomas (NFAs) challenging. The use of intraoperative MRI (iMRI) may lead to improved results. The goal of this retrospective study was to evaluate the impact of iMRI on transsphenoidal reoperations for NFA.


Between September 2002 and July 2012, 109 patients underwent reoperations in which 111 transsphenoidal procedures were performed and are represented in this study. A 1.5-T Magnetom Sonata Maestro Class scanner (Siemens) was used for iMRI. Follow-up iMRI scans were acquired if gross-total resection (GTR) was suspected or if no further removal seemed possible.


Surgery was performed for tumor persistence and regrowth in 26 (23%) and 85 (77%) patients, respectively. On the initial iMRI scans, GTR was confirmed in 19 (17%) patients. Remnants were located as follows: 65 in the cavernous sinus (71%), 35 in the suprasellar space (38%), 9 in the retrosellar space (10%). Additional resection was possible in 62 (67%) patients, resulting in a significant volume reduction and increased GTR rate (49%). The GTR rates of invasive tumors on initial iMRI and postoperative MRI (poMRI) were 7% and 25%, respectively. Additional remnant resection was possible in 64% of the patients. Noninvasive tumors were shown to be totally resected on the initial iMRI in 31% of cases. After additional resection for 69% of the procedures, the GTR rate on poMRI was 75%. Transcranial surgery to resect tumor remnants was indicated in 5 (5%), and radiotherapy was performed in 29 (27%) patients. After GTR, no recurrence was detected during a mean follow-up of 2.2 ± 2.1 years.


The use of iMRI in transsphenoidal reoperations for NFA leads to significantly higher GTR rates. It thus prevents additional operations and reduces the number of tumor remnants. The complication rates do not exceed the incidences reported in the literature for primary transsphenoidal surgery. If complete tumor resection is not possible, iMRI guidance can facilitate tumor volume reduction.