Search Results

You are looking at 1 - 10 of 33 items for

  • Author or Editor: Robert M. Starke x
  • By Author: Ding, Dale x
Clear All Modify Search
Restricted access

Oral Presentations

2010 AANS Annual Meeting Philadelphia, Pennsylvania May 1–5, 2010

Restricted access

Dale Ding, Chun-Po Yen, Zhiyuan Xu, Robert M. Starke and Jason P. Sheehan

Object

The appropriate management of unruptured intracranial arteriovenous malformations (AVMs) remains controversial. In the present study, the authors evaluate the radiographic and clinical outcomes of radiosurgery for a large cohort of patients with unruptured AVMs.

Methods

From a prospective database of 1204 cases of AVMs involving patients treated with radiosurgery at their institution, the authors identified 444 patients without evidence of rupture prior to radiosurgery. The patients' mean age was 36.9 years, and 50% were male. The mean AVM nidus volume was 4.2 cm3, 13.5% of the AVMs were in a deep location, and 44.4% were at least Spetzler-Martin Grade III. The median radiosurgical prescription dose was 20 Gy. Univariate and multivariate Cox regression analyses were used to determine risk factors associated with obliteration, postradiosurgery hemorrhage, radiation-induced changes, and postradiosurgery cyst formation. The mean duration of radiological and clinical follow-up was 76 months and 86 months, respectively.

Results

The cumulative AVM obliteration rate was 62%, and the postradiosurgery annual hemorrhage rate was 1.6%. Radiation-induced changes were symptomatic in 13.7% and permanent in 2.0% of patients. The statistically significant independent positive predictors of obliteration were no preradiosurgery embolization (p < 0.001), increased prescription dose (p < 0.001), single draining vein (p < 0.001), radiological presence of radiation-induced changes (p = 0.004), and lower Spetzler-Martin grade (p = 0.016). Increased volume and higher Pittsburgh radiosurgery-based AVM score were predictors of postradiosurgery hemorrhage in the univariate analysis only. Clinical deterioration occurred in 30 patients (6.8%), more commonly in patients with postradiosurgery hemorrhage (p = 0.018).

Conclusions

Radiosurgery afforded a reasonable chance of obliteration of unruptured AVMs with relatively low rates of clinical and radiological complications.

Restricted access

Robert M. Starke, Chun-Po Yen, Dale Ding and Jason P. Sheehan

Object

The authors performed a study to review outcomes following Gamma Knife radiosurgery for cerebral arteriovenous malformations (AVMs) and to create a practical scale to predict long-term outcome.

Methods

Outcomes were reviewed in 1012 patients who were followed up for more than 2 years. Favorable outcome was defined as AVM obliteration and no posttreatment hemorrhage or permanent, symptomatic, radiation-induced complication. Preradiosurgery patient and AVM characteristics predictive of outcome in multivariate analysis were weighted according to their odds ratios to create the Virginia Radiosurgery AVM Scale.

Results

The mean follow-up time was 8 years (range 2–20 years). Arteriovenous malformation obliteration occurred in 69% of patients. Postradiosurgery hemorrhage occurred in 88 patients, for a yearly incidence of 1.14%. Radiation-induced changes occurred in 387 patients (38.2%), symptoms in 100 (9.9%), and permanent deficits in 21 (2.1%). Favorable outcome was achieved in 649 patients (64.1%). The Virginia Radiosurgery AVM Scale was created such that patients were assigned 1 point each for having an AVM volume of 2–4 cm3, eloquent AVM location, or a history of hemorrhage, and 2 points for having an AVM volume greater than 4 cm3. Eighty percent of patients who had a score of 0–1 points had a favorable outcome, as did 70% who had a score of 2 points and 45% who had a score of 3–4 points. The Virginia Radiosurgery AVM Scale was still predictive of outcome after controlling for predictive Gamma Knife radiosurgery treatment parameters, including peripheral dose and number of isocenters, in a multivariate analysis. The Spetzler-Martin grading scale and the Radiosurgery-Based Grading Scale predicted favorable outcome, but the Virginia Radiosurgery AVM Scale provided the best assessment.

Conclusions

Gamma Knife radiosurgery can be used to achieve long-term AVM obliteration and neurological preservation in a predictable fashion based on patient and AVM characteristics.

Free access

Dale Ding, Robert M. Starke, John Hantzmon, Chun-Po Yen, Brian J. Williams and Jason P. Sheehan

Object

WHO Grade II and III intracranial meningiomas are uncommon, but they portend a significantly worse prognosis than their benign Grade I counterparts. The mainstay of current management is resection to obtain cytoreduction and histological tissue diagnosis. The timing and benefit of postoperative fractionated external beam radiation therapy and stereotactic radiosurgery remain controversial. The authors review the stereotactic radiosurgery outcomes for Grade II and III meningiomas.

Methods

A comprehensive literature search was performed using PubMed to identify all radiosurgery series reporting the treatment outcomes for Grade II and III meningiomas. Case reports and case series involving fewer than 10 patients were excluded.

Results

From 1998 to 2013, 19 radiosurgery series were published in which 647 Grade II and III meningiomas were treated. Median tumor volumes were 2.2–14.6 cm3. The median margin doses were 14–21 Gy, although generally the margin doses for Grade II meningiomas were 16–20 Gy and the margin doses for Grade III meningiomas were 18–22 Gy. The median 5-year PFS was 59% for Grade II tumors and 13% for Grade III tumors, which may have been affected by patient age, prior radiation therapy, tumor volume, and radiosurgical dose and timing. The median complication rate following radiosurgery was 8%.

Conclusions

The current data for radiosurgery suggest that it has a role in the management of residual or recurrent Grade II and III meningiomas. However, better studies are needed to fully define this role. Due to the relatively low prevalence of these tumors, it is unlikely that prospective studies will be feasible. As such, well-designed retrospective analyses may improve our understanding of the effect of radiosurgery on tumor recurrence and patient survival and the incidence and impact of treatment-induced complications.

Full access

Gregory J. Zipfel and Roberto C. Heros

Full access

Dale Ding, Chun-Po Yen, Robert M. Starke, Zhiyuan Xu, Xingwen Sun and Jason P. Sheehan

Object

Intracranial arteriovenous malformations (AVMs) are most commonly classified based on their Spetzler-Martin grades. Due to the composition of the Spetzler-Martin grading scale, Grade III AVMs are the most heterogeneous, comprising 4 distinct lesion subtypes. The management of this class of AVMs and the optimal treatment approach when intervention is indicated remain controversial. The authors report their experience with radiosurgery for the treatment of Grade III AVMs in a large cohort of patients.

Methods

All patients with Spetzler-Martin Grade III AVMs treated with radiosurgery at the University of Virginia over the 20-year span from 1989 to 2009 were identified. Patients who had less than 2 years of radiological follow-up and did not have evidence of complete obliteration during that period were excluded from the study, leaving 398 cases for analysis. The median patient age at treatment was 31 years. The most common presenting symptoms were hemorrhage (59%), seizure (20%), and headache (10%). The median AVM volume was 2.8 cm3, and the median prescription dose was 20 Gy. The median radiological and clinical follow-up intervals were 54 and 68 months, respectively. Univariate and multivariate Cox proportional hazards and logistic regression analysis were used to identify factors associated with obliteration, postradiosurgery radiation-induced changes (RIC), and favorable outcome.

Results

Complete AVM obliteration was observed in 69% of Grade III AVM cases at a median time of 46 months after radiosurgery. The actuarial obliteration rates at 3 and 5 years were 38% and 60%, respectively. The obliteration rate was higher in ruptured AVMs than in unruptured ones (p < 0.001). Additionally, the obliteration rate for Grade III AVMs with small size (< 3 cm diameter), deep venous drainage, and location in eloquent cortex was higher than for the other subtypes (p < 0.001). Preradiosurgery AVM rupture (p = 0.016), no preradiosurgery embolization (p = 0.003), increased prescription dose (p < 0.001), fewer isocenters (p = 0.006), and a single draining vein (p = 0.018) were independent predictors of obliteration. The annual risk of postradiosurgery hemorrhage during the latency period was 1.7%. Two patients (0.5%) died of hemorrhage during the radiosurgical latency period. The rates of symptomatic and permanent RIC were 12% and 4%, respectively. Absence of preradiosurgery AVM rupture (p < 0.001) and presence of a single draining vein (p < 0.001) were independent predictors of RIC. Favorable outcome was observed in 63% of patients. Independent predictors of favorable outcome were no preradiosurgery hemorrhage (p = 0.014), increased prescription dose (p < 0.001), fewer isocenters (p = 0.014), deep location (p = 0.014), single draining vein (p = 0.001), and lower Virginia radiosurgery AVM scale score (p = 0.016).

Conclusions

Radiosurgery for Spetzler-Martin Grade III AVMs yields relatively high rates of obliteration with a low rate of adverse procedural events. Small and ruptured lesions are more likely to become obliterated after radiosurgery than large and unruptured ones.

Free access

Dale Ding, Robert M. Starke, Christopher R. Durst, R. Webster Crowley and Kenneth C. Liu

Increasing evidence supports dural venous sinus stenosis as the patho-etiology of pseudotumor cerebri (PTC) in a subset of affected patients. In this video, we demonstrate our technique for 1) diagnostic venous manometry to identify a flow-limiting stenosis of the transverse sinus in a PTC patient; and 2) successful treatment of the patient with venous stenting across the structural and physiological stricture in the dural sinus. The pressure gradient decreased from 20 mmHg pre-stent to 3 mmHg post-stent. In order to further quantify the effect of our intervention, concurrent intracranial pressure monitoring was performed.

The video can be found here: http://youtu.be/auxRg17F8yI.

Full access

Dale Ding, Chun-Po Yen, Zhiyuan Xu, Robert M. Starke and Jason P. Sheehan

Object

Low-grade, or Spetzler-Martin (SM) Grades I and II, arteriovenous malformations (AVMs) are associated with lower surgical morbidity rates than higher-grade lesions. While radiosurgery is now widely accepted as an effective treatment approach for AVMs, the risks and benefits of the procedure for low-grade AVMs, as compared with microsurgery, remain poorly understood. The authors of this study present the outcomes for a large cohort of low-grade AVMs treated with radiosurgery.

Methods

From an institutional radiosurgery database comprising approximately 1450 AVM cases, all patients with SM Grade I and II lesions were identified. Patients with less than 2 years of radiological follow-up, except those with complete AVM obliteration, were excluded from analysis. Univariate and multivariate Cox proportional-hazards and logistic regression analyses were used to determine factors associated with obliteration, radiation-induced changes (RICs), and hemorrhage following radiosurgery.

Results

Five hundred two patients harboring low-grade AVMs were eligible for analysis. The median age was 35 years, 50% of patients were male, and the most common presentation was hemorrhage (47%). The median AVM volume and prescription dose were 2.4 cm3 and 23 Gy, respectively. The median radiological and clinical follow-up intervals were 48 and 62 months, respectively. The cumulative obliteration rate was 76%. The median time to obliteration was 40 months, and the actuarial obliteration rates were 66% and 80% at 5 and 10 years, respectively. Independent predictors of obliteration were no preradiosurgery embolization (p < 0.001), decreased AVM volume (p = 0.005), single draining vein (p = 0.013), lower radiosurgery-based AVM scale score (p = 0.016), and lower Virginia Radiosurgery AVM Scale (Virginia RAS) score (p = 0.001). The annual postradiosurgery hemorrhage rate was 1.4% with increased AVM volume (p = 0.034) and lower prescription dose (p = 0.006) as independent predictors. Symptomatic and permanent RICs were observed in 8.2% and 1.4% of patients, respectively. No preradiosurgery hemorrhage (p = 0.011), a decreased prescription dose (p = 0.038), and a higher Virginia RAS score (p = 0.001) were independently associated with postradiosurgery RICs.

Conclusions

Spetzler-Martin Grade I and II AVMs are very amenable to successful treatment with stereotactic radiosurgery. While patient, physician, and institutional preferences frequently dictate the final course of treatment, radiosurgery offers a favorable risk-to-benefit profile for the management of low-grade AVMs.