Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Alfredo Conti x
  • By Author: De Vico, Gionata x
Clear All Modify Search
Restricted access

Giovanni Grasso, Marcello Passalacqua, Alessandra Sfacteria, Alfredo Conti, Antonio Morabito, Giuseppe Mazzullo, Gionata De Vico, Michele Buemi, Battesimo Macrì and Francesco Tomasello

Object. Results of recent studies indicate that erythropoietin (EPO) produces a neuroprotective effect on experimental subarachnoid hemorrhage (SAH). It has been reported that S-100 protein levels increase in cerebrospinal fluid (CSF) after SAH, providing a highly prognostic indication of unfavorable outcome. This study was conducted to validate further the findings of S-100 protein as an index of brain damage and to assess whether treatment with recombinant human EPO (rhEPO) would limit the increase of S-100 protein level in CSF following experimental SAH.

Methods. Thirty-two rabbits were each assigned to one of four groups: Group 1, control; Group 2, SAH; Group 3, SAH plus placebo; and Group 4, SAH plus rhEPO (each group consisted of eight rabbits). The rhEPO and placebo were administered to the rabbits after SAH had been induced, and S-100 protein levels in the CSF of these animals were measured at 24, 48, and 72 hours after the experimental procedure. In each group of animals levels of S-100 protein were compared with the mortality rate, neurological outcome, and neuronal ischemic damage. High S-100 protein levels were found in rabbits in Groups 2 and 3, which exhibited poor neurological status and harbored a high number of damaged cortical neurons. Favorable neurological outcome and significant reductions in total numbers of damaged neurons were observed in animals in Group 4 in which there were significantly lower S-100 protein concentrations compared with animals in Groups 2 and 3 (p < 0.001).

Conclusions. The results of this study support the concept that determination of the S-100 protein level in CSF has prognostic value after SAH. The findings also confirm that rhEPO acts as a neuroprotective agent during experimental SAH.