Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Francesco Sammartino x
  • By Author: Crawley, Adrian x
Clear All Modify Search
Full access

Francesco Sammartino, Vibhor Krishna, Tejas Sankar, Jason Fisico, Suneil K. Kalia, Mojgan Hodaie, Walter Kucharczyk, David J. Mikulis, Adrian Crawley and Andres M. Lozano

OBJECTIVE

The aim of this study was to evaluate the safety of 3-T MRI in patients with implanted deep brain stimulation (DBS) systems.

METHODS

This study was performed in 2 phases. In an initial phantom study, a Lucite phantom filled with tissue-mimicking gel was assembled. The system was equipped with a single DBS electrode connected to an internal pulse generator. The tip of the electrode was coupled to a fiber optic thermometer with a temperature resolution of 0.1°C. Both anatomical (T1- and T2-weighted) and functional MRI sequences were tested. A temperature change within 2°C from baseline was considered safe. After findings from the phantom study suggested safety, 10 patients with implanted DBS systems targeting various brain areas provided informed consent and underwent 3-T MRI using the same imaging sequences. Detailed neurological evaluations and internal pulse generator interrogations were performed before and after imaging.

RESULTS

During phantom testing, the maximum temperature increase was registered using the T2-weighted sequence. The maximal temperature changes at the tip of the DBS electrode were < 1°C for all sequences tested. In all patients, adequate images were obtained with structural imaging, although a significant artifact from lead connectors interfered with functional imaging quality. No heating, warmth, or adverse neurological effects were observed.

CONCLUSIONS

To the authors' knowledge, this was the first study to assess the clinical safety of 3-T MRI in patients with a fully implanted DBS system (electrodes, extensions, and pulse generator). It provided preliminary data that will allow further examination and assessment of the safety of 3-T imaging studies in patients with implanted DBS systems. The authors cannot advocate widespread use of this type of imaging in patients with DBS implants until more safety data are obtained.

Restricted access

Alexandre Boutet, Ileana Hancu, Utpal Saha, Adrian Crawley, David S. Xu, Manish Ranjan, Eugen Hlasny, Robert Chen, Warren Foltz, Francesco Sammartino, Ailish Coblentz, Walter Kucharczyk and Andres M. Lozano

OBJECTIVE

Physicians are more frequently encountering patients who are treated with deep brain stimulation (DBS), yet many MRI centers do not routinely perform MRI in this population. This warrants a safety assessment to improve DBS patients’ accessibility to MRI, thereby improving their care while simultaneously providing a new tool for neuromodulation research.

METHODS

A phantom simulating a patient with a DBS neuromodulation device (DBS lead model 3387 and IPG Activa PC model 37601) was constructed and used. Temperature changes at the most ventral DBS electrode contacts, implantable pulse generator (IPG) voltages, specific absorption rate (SAR), and B1+rms were recorded during 3-T MRI scanning. Safety data were acquired with a transmit body multi-array receive and quadrature transmit-receive head coil during various pulse sequences, using numerous DBS configurations from “the worst” to “the most common.”

In addition, 3-T MRI scanning (T1 and fMRI) was performed on 41 patients with fully internalized and active DBS using a quadrature transmit-receive head coil. MR images, neurological examination findings, and stability of the IPG impedances were assessed.

RESULTS

In the phantom study, temperature rises at the DBS electrodes were less than 2°C for both coils during 3D SPGR, EPI, DTI, and SWI. Sequences with intense radiofrequency pulses such as T2-weighted sequences may cause higher heating (due to their higher SAR). The IPG did not power off and kept a constant firing rate, and its average voltage output was unchanged. The 41 DBS patients underwent 3-T MRI with no adverse event.

CONCLUSIONS

Under the experimental conditions used in this study, 3-T MRI scanning of DBS patients with selected pulse sequences appears to be safe. Generally, T2-weighted sequences (using routine protocols) should be avoided in DBS patients. Complementary 3-T MRI phantom safety data suggest that imaging conditions that are less restrictive than those used in the patients in this study, such as using transmit body multi-array receive coils, may also be safe. Given the interplay between the implanted DBS neuromodulation device and the MRI system, these findings are specific to the experimental conditions in this study.