Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Jeffrey Balzer x
  • By Author: Crammond, Donald x
Clear All Modify Search
Full access

Parthasarathy Thirumala, Andrew M. Frederickson, Jeffrey Balzer, Donald Crammond, Miguel E. Habeych, Yue-Fang Chang and Raymond F. Sekula Jr.

OBJECT

Microvascular decompression is a safe and effective procedure to treat hemifacial spasm, but the operation poses some risk to the patient’s hearing. While severe sensorineural hearing loss across all frequencies occurs at a low rate in experienced hands, a recent study suggests that as many as one-half of patients who undergo this procedure may experience ipsilateral high-frequency hearing loss (HFHL), and as many as one-quarter may experience contralateral HFHL. While it has been suggested that drill-related noise may account for this finding, this study was designed to examine the effect of a number of techniques designed to protect the vestibulocochlear nerve from operative manipulation on the incidence of HFHL.

METHODS

Pure-tone audiometry was performed both preoperatively and postoperatively on 67 patients who underwent microvascular decompression for hemifacial spasm during the study period. A change of greater than 10 dB at either 4 kHz or 8 kHz was considered to be HFHL. Additionally, the authors analyzed intraoperative brainstem auditory evoked potentials from this patient cohort.

RESULTS

The incidence of ipsilateral HFHL in this cohort was 7.4%, while the incidence of contralateral HFHL was 4.5%. One patient (1.5%; also included in the HFHL group) experienced an ipsilateral nonserviceable hearing loss.

CONCLUSIONS

The reduced incidence of HFHL in this study suggests that technical modifications including performing the procedure without the use of fixed retraction may greatly reduce, but not eliminate, the occurrence of HFHL following microvascular decompression for hemifacial spasm.

Full access

Parthasarathy Thirumala, Kristin Meigh, Navya Dasyam, Preethi Shankar, Kanika R. K. Sarma, Deepika R. K. Sarma, Miguel Habeych, Donald Crammond and Jeffrey Balzer

OBJECT

The primary aim of this study was to evaluate the incidence and discuss the pathogenesis of high-frequency hearing loss (HFHL) after microvascular decompression (MVD) for trigeminal neuralgia (TGN), glossopharyngeal neuralgia (GPN), or geniculate neuralgia (GN).

METHODS

The authors analyzed preoperative and postoperative audiogram data and brainstem auditory evoked potentials (BAEPs) from 93 patients with TGN, 6 patients with GPN, and 8 patients with GN who underwent MVD. Differences in pure tone audiometry > 10 dB at frequencies of 0.25, 0.5, 1, 2, 4, and 8 kHz were calculated preoperatively and postoperatively for both the ipsilateral and the contralateral sides. Intraoperative monitoring records were analyzed and compared with the incidence of HFHL, which was defined as a change in pure tone audiometry > 10 dB at frequencies of 4 and 8 kHz.

RESULTS

The incidence of HFHL was 30.84% on the side ipsilateral to the surgery and 20.56% on the contralateral side. Of the 47 patients with HFHL, 20 had conductive hearing loss, and 2 experienced nonserviceable hearing loss after the surgery. The incidences of HFHL on the ipsilateral side at 4 and 8 kHz were 17.76% and 25.23%, respectively, and 8.41% and 15.89%, respectively, on the contralateral side. As the audiometric frequency increased, the number of patients with hearing loss increased. No significant postoperative difference was found between patients with and without HFHL in intraoperative BAEP waveforms. Sex, age, and affected side were not associated with an increase in the incidence of hearing loss.

CONCLUSIONS

High-frequency hearing loss occurred after MVD for TGN, GPN, or GN, and the greatest incidence occurred on the ipsilateral side. This hearing loss may be a result of drill-induced noise and/or transient loss of cerebrospinal fluid during the course of the procedure. Changes in intraoperative BAEP waveforms were not useful in predicting HFHL after MVD. Repeated postoperative audiological examinations may be useful in assessing the prognosis of HFHL.

Full access

Cheran Elangovan, Supriya Palwinder Singh, Paul Gardner, Carl Snyderman, Elizabeth C. Tyler-Kabara, Miguel Habeych, Donald Crammond, Jeffrey Balzer and Parthasarathy D. Thirumala

OBJECT

The aim of this study was to evaluate the value of intraoperative neurophysiological monitoring (IONM) using electromyography (EMG), brainstem auditory evoked potentials (BAEPs), and somatosensory evoked potentials (SSEPs) to predict and/or prevent postoperative neurological deficits in pediatric patients undergoing endoscopic endonasal surgery (EES) for skull base tumors.

METHODS

All consecutive pediatric patients with skull base tumors who underwent EES with at least 1 modality of IONM (BAEP, SSEP, and/or EMG) at our institution between 1999 and 2013 were retrospectively reviewed. Staged procedures and repeat procedures were identified and analyzed separately. To evaluate the diagnostic accuracy of significant free-run EMG activity, the prevalence of cranial nerve (CN) deficits and the sensitivity, specificity, and positive and negative predictive values were calculated.

RESULTS

A total of 129 patients underwent 159 procedures; 6 patients had a total of 9 CN deficits. The incidences of CN deficits based on the total number of nerves monitored in the groups with and without significant free-run EMG activity were 9% and 1.5%, respectively. The incidences of CN deficits in the groups with 1 staged and more than 1 staged EES were 1.5% and 29%, respectively. The sensitivity, specificity, and negative predictive values (with 95% confidence intervals) of significant EMG to detect CN deficits in repeat procedures were 0.55 (0.22–0.84), 0.86 (0.79–0.9), and 0.97 (0.92–0.99), respectively. Two patients had significant changes in their BAEPs that were reversible with an increase in mean arterial pressure.

CONCLUSIONS

IONM can be applied effectively and reliably during EES in children. EMG monitoring is specific for detecting CN deficits and can be an effective guide for dissecting these procedures. Triggered EMG should be elicited intraoperatively to check the integrity of the CNs during and after tumor resection. Given the anatomical complexity of pediatric EES and the unique challenges encountered, multimodal IONM can be a valuable adjunct to these procedures.