Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Robert M. Hess x
  • By Author: Chiang, Veronica x
Clear All Modify Search
Restricted access

Jason P. Sheehan, Robert M. Starke, Hideyuki Kano, Gene H. Barnett, David Mathieu, Veronica Chiang, James B. Yu, Judith Hess, Heyoung L. McBride, Norissa Honea, Peter Nakaji, John Y. K. Lee, Gazanfar Rahmathulla, Wendi A. Evanoff, Michelle Alonso-Basanta and L. Dade Lunsford

OBJECT

Posterior fossa meningiomas represent a common yet challenging clinical entity. They are often associated with neurovascular structures and adjacent to the brainstem. Resection can be undertaken for posterior fossa meningiomas, but residual or recurrent tumor is frequent. Stereotactic radiosurgery (SRS) has been used to treat meningiomas, and this study evaluates the outcome of this approach for those located in the posterior fossa.

METHODS

At 7 medical centers participating in the North American Gamma Knife Consortium, 675 patients undergoing SRS for a posterior fossa meningioma were identified, and clinical and radiological data were obtained for these cases. Females outnumbered males at a ratio of 3.8 to 1, and the median patient age was 57.6 years (range 12–89 years). Prior resection was performed in 43.3% of the patient sample. The mean tumor volume was 6.5 cm3, and a median margin dose of 13.6 Gy (range 8–40 Gy) was delivered to the tumor.

RESULTS

At a mean follow-up of 60.1 months, tumor control was achieved in 91.2% of cases. Actuarial tumor control was 95%, 92%, and 81% at 3, 5, and 10 years after radiosurgery. Factors predictive of tumor progression included age greater than 65 years (hazard ratio [HR] 2.36, 95% CI 1.30–4.29, p = 0.005), prior history of radiotherapy (HR 5.19, 95% CI 1.69–15.94, p = 0.004), and increasing tumor volume (HR 1.05, 95% CI 1.01–1.08, p = 0.005). Clinical stability or improvement was achieved in 92.3% of patients. Increasing tumor volume (odds ratio [OR] 1.06, 95% CI 1.01–1.10, p = 0.009) and clival, petrous, or cerebellopontine angle location as compared with petroclival, tentorial, and foramen magnum location (OR 1.95, 95% CI 1.05–3.65, p = 0.036) were predictive of neurological decline after radiosurgery. After radiosurgery, ventriculoperitoneal shunt placement, resection, and radiation therapy were performed in 1.6%, 3.6%, and 1.5%, respectively.

CONCLUSIONS

Stereotactic radiosurgery affords a high rate of tumor control and neurological preservation for patients with posterior fossa meningiomas. Those with a smaller tumor volume and no prior radiation therapy were more likely to have a favorable response after radiosurgery. Rarely, additional procedures may be required for hydrocephalus or tumor progression.

Restricted access

Robert M. Starke, David J. McCarthy, Ching-Jen Chen, Hideyuki Kano, Brendan J. McShane, John Lee, Mohana Rao Patibandla, David Mathieu, Lucas T. Vasas, Anthony M. Kaufmann, Wei Gang Wang, Inga S. Grills, Christopher P. Cifarelli, Gabriella Paisan, John Vargo, Tomas Chytka, Ladislava Janouskova, Caleb E. Feliciano, Nanthiya Sujijantarat, Charles Matouk, Veronica Chiang, Judith Hess, Rafael Rodriguez-Mercado, Daniel A. Tonetti, L. Dade Lunsford and Jason P. Sheehan

OBJECTIVE

The authors performed a study to evaluate the hemorrhagic rates of cerebral dural arteriovenous fistulas (dAVFs) and the risk factors of hemorrhage following Gamma Knife radiosurgery (GKRS).

METHODS

Data from a cohort of patients undergoing GKRS for cerebral dAVFs were compiled from the International Radiosurgery Research Foundation. The annual posttreatment hemorrhage rate was calculated as the number of hemorrhages divided by the patient-years at risk. Risk factors for dAVF hemorrhage prior to GKRS and during the latency period after radiosurgery were evaluated in a multivariate analysis.

RESULTS

A total of 147 patients with dAVFs were treated with GKRS. Thirty-six patients (24.5%) presented with hemorrhage. dAVFs that had any cortical venous drainage (CVD) (OR = 3.8, p = 0.003) or convexity or torcula location (OR = 3.3, p = 0.017) were more likely to present with hemorrhage in multivariate analysis. Half of the patients had prior treatment (49.7%). Post-GRKS hemorrhage occurred in 4 patients, with an overall annual risk of 0.84% during the latency period. The annual risks of post-GKRS hemorrhage for Borden type 2–3 dAVFs and Borden type 2–3 hemorrhagic dAVFs were 1.45% and 0.93%, respectively. No hemorrhage occurred after radiological confirmation of obliteration. Independent predictors of hemorrhage following GKRS included nonhemorrhagic neural deficit presentation (HR = 21.6, p = 0.027) and increasing number of past endovascular treatments (HR = 1.81, p = 0.036).

CONCLUSIONS

Patients have similar rates of hemorrhage before and after radiosurgery until obliteration is achieved. dAVFs that have any CVD or are located in the convexity or torcula were more likely to present with hemorrhage. Patients presenting with nonhemorrhagic neural deficits and a history of endovascular treatments had higher risks of post-GKRS hemorrhage.