Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Jason Barber x
  • By Author: Chesnut, Randall M. x
Clear All Modify Search
Restricted access

Aziz S. Alali, Nancy Temkin, Monica S. Vavilala, Abhijit V. Lele, Jason Barber, Sureyya Dikmen and Randall M. Chesnut

OBJECTIVE

The aim of this study was to examine the relationship between early arterial oxygenation thresholds and long-term outcome after severe traumatic brain injury (TBI).

METHODS

In a post hoc analysis of a randomized trial, adults with severe TBI were classified based on exposure to different levels of arterial oxygenation as measured using the average of arterial partial pressure of oxygen (PaO2) values obtained within 24 hours of admission. Potentially important PaO2 thresholds were defined a priori. The primary outcome was Glasgow Outcome Scale–Extended (GOSE) score at 6 months. Secondary outcomes were cognitive outcomes measured using a battery of 9 neuropsychological tests administered at 6 months, and 6-month mortality.

RESULTS

In adjusted analyses, oxygenation thresholds of 150 and 200 mm Hg were associated with better functional outcome at 6 months (adjusted OR for better functional outcome on GOSE 1.82 [95% CI 1.12–2.94] and 1.59 [95% CI 1.06–2.37], respectively) and improved cognitive outcome at 6 months (adjusted beta coefficients for better cognitive percentile across 9 neuropsychological tests: 6.9 [95% CI 1.3–12.5] and 6.8 [95% CI 2.4–11.3], respectively). There was no significant association between oxygenation level and 6-month mortality except at a PaO2 threshold of 200 mm Hg (OR for death 0.36, 95% CI 0.18–0.71). Higher or lower oxygenation thresholds were not associated with functional or cognitive outcome.

CONCLUSIONS

In this observational study, the relationship between early arterial oxygenation and long-term functional and cognitive TBI outcomes appears to be U-shaped. Mild levels of hyperoxemia within the first 24 hours after injury were associated with better long-term functional and cognitive outcomes. These findings highlight the importance of examining balanced oxygen supplementation as a potential strategy to improve TBI outcomes in future research.

Restricted access

Aziz S. Alali, Nancy Temkin, Jason Barber, Jim Pridgeon, Kelley Chaddock, Sureyya Dikmen, Peter Hendrickson, Walter Videtta, Silvia Lujan, Gustavo Petroni, Nahuel Guadagnoli, Zulma Urbina and Randall M. Chesnut

OBJECTIVE

While existing guidelines support the treatment of intracranial hypertension in severe traumatic brain injury (TBI), it is unclear when to suspect and initiate treatment for high intracranial pressure (ICP). The objective of this study was to derive a clinical decision rule that accurately predicts intracranial hypertension.

METHODS

Using Delphi methods, the authors identified a set of potential predictors of intracranial hypertension and a clinical decision rule a priori by consensus among a group of 43 neurosurgeons and intensivists who have extensive experience managing severe TBI without ICP monitoring. To validate these predictors, the authors used data from a Latin American trial (n = 150; BEST TRIP). To report on the performance of the rule, they calculated sensitivity, specificity, and positive and negative predictive values with 95% confidence intervals. In a secondary analysis, the rule was validated using data from a North American trial (n = 131; COBRIT).

RESULTS

The final predictors and the clinical decision rule were approved by 97% of participants in the consensus working group. The predictors are divided into major and minor criteria. High ICP would be considered suspected in the presence of 1 major or ≥ 2 minor criteria. Major criteria are: compressed cisterns (CT classification of Marshall diffuse injury [DI] III), midline shift > 5 mm (Marshall DI IV), or nonevacuated mass lesion. Minor criteria are: Glasgow Coma Scale (GCS) motor score ≤ 4, pupillary asymmetry, abnormal pupillary reactivity, or Marshall DI II. The area under the curve for the logistic regression model that contains all the predictors was 0.86. When high ICP was defined as > 22 mm Hg, the decision rule performed with a sensitivity of 93.9% (95% CI 85.0%–98.3%), a specificity of 42.3% (95% CI 31.7%–53.6%), a positive predictive value of 55.5% (95% CI 50.7%–60.2%), and a negative predictive value of 90% (95% CI 77.1%–96.0%). The sensitivity of the clinical decision rule improved with higher ICP cutoffs up to a sensitivity of 100% when intracranial hypertension was defined as ICP > 30 mm Hg. Similar results were found in the North American cohort.

CONCLUSIONS

A simple clinical decision rule based on a combination of clinical and imaging findings was found to be highly sensitive in distinguishing patients with severe TBI who would suffer intracranial hypertension. It could be used to identify patients who require ICP monitoring in high-resource settings or start ICP-lowering treatment in environments where resource limitations preclude invasive monitoring.

Clinical trial registration no.: NCT02059941 (clinicaltrials.gov).

Restricted access

Ryan P. Morton, Isaac Josh Abecassis, Josiah F. Hanson, Jason K. Barber, Mimi Chen, Cory M. Kelly, John D. Nerva, Samuel N. Emerson, Chibawanye I. Ene, Michael R. Levitt, Michelle M. Chowdhary, Andrew L. Ko and Randall M. Chesnut

OBJECTIVE

Despite their technical simplicity, cranioplasty procedures carry high reported morbidity rates. The authors here present the largest study to date on complications after cranioplasty, focusing specifically on the relationship between complications and timing of the operation.

METHODS

The authors retrospectively reviewed all cranioplasty cases performed at Harborview Medical Center over the past 10.75 years. In addition to relevant clinical and demographic characteristics, patient morbidity and mortality data were abstracted from the electronic medical record. Cox proportional-hazards models were used to analyze variables potentially associated with the risk of infection, hydrocephalus, seizure, hematoma, and bone flap resorption.

RESULTS

Over the course of 10.75 years, 754 cranioplasties were performed at a single institution. Sixty percent of the patients who underwent these cranioplasties were male, and the median follow-up overall was 233 days. The 30-day mortality rate was 0.26% (2 cases, both due to postoperative epidural hematoma). Overall, 24.6% percent of the patients experienced at least 1 complication including infection necessitating explantation of the flap (6.6%), postoperative hydrocephalus requiring a shunt (9.0%), resorption of the flap requiring synthetic cranioplasty (6.3%), seizure (4.1%), postoperative hematoma requiring evacuation (2.3%), and other (1.6%).

The rate of infection was significantly higher if the cranioplasty had been performed < 14 days after the initial craniectomy (p = 0.007, Holm-Bonferroni–adjusted p = 0.028). Hydrocephalus was significantly correlated with time to cranioplasty (OR 0.92 per 10-day increase, p < 0.001) and was most common in patients whose cranioplasty had been performed < 90 days after initial craniectomy. New-onset seizure, however, only occurred in patients who had undergone their cranioplasty > 90 days after initial craniectomy. Bone flap resorption was the least likely complication for patients whose cranioplasty had been performed between 15 and 30 days after initial craniectomy. Resorption was also correlated with patient age, with a hazard ratio of 0.67 per increase of 10 years of age (p = 0.001).

CONCLUSIONS

Cranioplasty performed between 15 and 30 days after initial craniectomy may minimize infection, seizure, and bone flap resorption, whereas waiting > 90 days may minimize hydrocephalus but may increase the risk of seizure.

Restricted access

Ryan P. Morton, I. Josh Abecassis, Josiah F. Hanson, Jason Barber, John D. Nerva, Samuel N. Emerson, Chibawanye I. Ene, Michelle M. Chowdhary, Michael R. Levitt, Andrew L. Ko, Timothy H. Dellit and Randall M. Chesnut

OBJECTIVE

The authors' aim was to report the largest study on predictors of infection after cranioplasty and to assess the predictive value of intraoperative bone flap cultures before cryopreservation.

METHODS

They retrospectively examined all cranioplasties performed between March 2004 and November 2014. Throughout this study period, the standard protocol during initial craniectomy was to obtain a culture swab of the extracted autologous bone flap (ABF)—prior to its placement in cytostorage—to screen for microbial contamination. Two consecutive protocols were employed for the use and interpretation of the intraoperative swab culture results: A) From March 2004 through June 2013, any culture-positive ABF (+ABF) was discarded and a custom synthetic prosthesis was implanted at the time of cranioplasty. B) From July 2013 through November 2014, any ABF with a skin flora organism was not discarded. Instead, cryopreservation was maintained and the +ABF was reimplanted after a 10-minute soak in bacitracin irrigation as well as a 3-minute soak in betadine.

RESULTS

Over the 10.75-year period, 754 cranioplasty procedures were performed. The median time from craniectomy to cranioplasty was 123 days. Median follow-up after cranioplasty was 237 days for protocol A and 225 days for protocol B. The overall infection rate after cranioplasty was 6.6% (50 cases) occurring at a median postoperative Day 31. Staphylococcus spp. were involved as the causative organisms in 60% of cases.

Culture swabs taken at the time of initial craniectomy were available for 640 ABFs as 114 ABFs were not salvageable. One hundred twenty-six (20%) were culture positive. Eighty-nine +ABFs occurred during protocol A and were discarded in favor of a synthetic prosthesis at the time of cranioplasty, whereas 37 +ABFs occurred under protocol B and were reimplanted at the time of cranioplasty.

Cranioplasty material did not affect the postcranioplasty infection rate. There was no significant difference in the infection rate among sterile ABFs (7%), +ABFs (8%), and synthetic prostheses (5.5%; p = 0.425). All 3 +ABF infections under protocol B were caused by organisms that differed from those in the original intraoperative bone culture from the initial craniectomy. A cranioplasty procedure ≤ 14 days after initial craniectomy was the only significant predictor of postcranioplasty infection (p = 0.007, HR 3.62).

CONCLUSIONS

Cranioplasty procedures should be performed at least 14 days after initial craniectomy to minimize infection risk. Obtaining intraoperative bone cultures at the time of craniectomy in the absence of clinical infection should be discontinued as the culture results were not a useful predictor of postcranioplasty infection and led to the unnecessary use of synthetic prostheses and increased health care costs.