Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ryszard M. Pluta x
  • By Author: Butman, John A. x
Clear All Modify Search
Restricted access

Ryszard M. Pluta, John A. Butman, Bawarjan Schatlo, Dennis L. Johnson and Edward H. Oldfield

Object

Investigators in experimental and clinical studies have used the intrathecal route to deliver drugs to prevent or treat vasospasm. However, a clot near an artery or arteries after subarachnoid hemorrhage (SAH) may hamper distribution and limit the effects of intrathecally delivered compounds. In a primate model of right middle cerebral artery (MCA) SAH, the authors examined the distribution of Isovue-M 300 and 3% Evans blue after infusion into the cisterna magna CSF.

Methods

Ten cynomolgus monkeys were assigned to SAH and sham SAH surgery groups (5 in each group). Monkeys received CSF injections as long as 28 days after SAH and were killed 3 hours after the contrast/Evans blue injection. The authors assessed the distribution of contrast material on serial CT within 2 hours after contrast injection and during autopsy within 3 hours after Evans blue staining.

Results

Computed tomography cisternographies showed no contrast in the vicinity of the right MCA (p < 0.05 compared with left); the distribution of contrast surrounding the entire right cerebral hemisphere was substantially reduced. Postmortem analysis demonstrated much less Evans blue staining of the right hemisphere surface compared with the left. Furthermore, the Evans blue dye did not penetrate into the right sylvian fissure, which occurred surrounding the left MCA. The authors observed the same pattern of changes and differences in contrast distribution between SAH and sham SAH animals and between the right and the left hemispheres on Days 1, 3, 7, 14, 21, and 28 after SAH.

Conclusions

Intrathecal drug distribution is substantially limited by SAH. Thus, when using intrathecal drug delivery after SAH, vasoactive drugs are unlikely to reach the arteries that are at the highest risk of delayed cerebral vasospasm.

Full access

Ryszard M. Pluta, Scott D. Wait, John A. Butman, Kathleen A. Leppig, Alexander O. Vortmeyer, Edward H. Oldfield and Russell R. Lonser

Hemangioblastomas are histologically benign neoplasms that occur sporadically or as part of von Hippel–Lindau disease. Hemangioblastomas may occur anywhere along the neuraxis, but sacral hemangioblastomas are extremely rare. To identify features that will help guide the operative and clinical management of these lesions, the authors describe the management of a large von Hippel–Lindau disease–associated sacral hemangioblastoma and review the literature.

The authors present the case of a 38-year-old woman with von Hippel–Lindau disease and a 10-year history of progressive back pain, as well as left lower-extremity pain and numbness. Neurological examination revealed decreased sensation in the left S-1 and S-2 dermatomes. Magnetic resonance imaging demonstrated a large enhancing lesion in the sacral region, with associated erosion of the sacrum. The patient underwent arteriography and embolization of the tumor and then resection. The histopathological diagnosis was consistent with hemangioblastoma and showed intrafascicular tumor infiltration of the S-2 nerve root. At 1-year follow-up examination, pain had resolved and numbness improved.

Sacral nerve root hemangioblastomas may be safely removed in most patients, resulting in stabilization or improvement in symptomatology. Generally, hemangioblastomas of the sacral nerve roots should be removed when they cause symptoms. Because they originate from the nerve root, the nerve root from which the hemangioblastoma originates must be sacrificed to achieve complete resection.