Browse

You are looking at 1 - 2 of 2 items for

  • By Author: Bonner, Tara F. x
Clear All
Full access

Tiffany G. Perry, Prasath Mageswaran, Robb W. Colbrunn, Tara F. Bonner, Todd Francis and Robert F. McLain

Object

Classic biomechanical models have used thoracic spines disarticulated from the rib cage, but the biomechanical influence of the rib cage on fracture biomechanics has not been investigated. The well-accepted construct for stabilizing midthoracic fractures is posterior instrumentation 3 levels above and 2 levels below the injury. Short-segment fixation failure in thoracolumbar burst fractures has led to kyphosis and implant failure when anterior column support is lacking. Whether shorter constructs are viable in the midthoracic spine is a point of controversy. The objective of this study was the biomechanical evaluation of a burst fracture at T-9 with an intact rib cage using different fixation constructs for stabilizing the spine.

Methods

A total of 8 human cadaveric spines (C7–L1) with intact rib cages were used in this study. The range of motion (ROM) between T-8 and T-10 was the outcome measure. A robotic spine testing system was programmed to apply pure moment loads (± 5 Nm) in lateral bending, flexion-extension, and axial rotation to whole thoracic specimens. Intersegmental rotations were measured using an optoelectronic system. Flexibility tests were conducted on intact specimens, then sequentially after surgically induced fracture at T-9, and after each of 4 fixation construct patterns. The 4 construct patterns were sequentially tested in a nondestructive protocol, as follows: 1) 3 above/2 below (3A/2B); 2) 1 above/1 below (1A/1B); 3) 1 above/1 below with vertebral body augmentation (1A/1B w/VA); and 4) vertebral body augmentation with no posterior instrumentation (VA). A repeated-measures ANOVA was used to compare the segmental motion between T-8 and T-10 vertebrae.

Results

Mean ROM increased by 86%, 151%, and 31% after fracture in lateral bending, flexion-extension, and axial rotation, respectively. In lateral bending, there was significant reduction compared with intact controls for all 3 instrumented constructs: 3A/2B (−92%, p = 0.0004), 1A/1B (−63%, p = 0.0132), and 1A/1B w/VA (−66%, p = 0.0150). In flexion-extension, only the 3A/2B pattern showed a significant reduction (−90%, p = 0.011). In axial rotation, motion was significantly reduced for the 3 instrumented constructs: 3A/2B (−66%, p = 0.0001), 1A/1B (−53%, p = 0.0001), and 1A/1B w/VA (−51%, p = 0.0002). Between the 4 construct patterns, the 3 instrumented constructs (3A/2B, 1A/1B, and 1A/1B w/VA) showed comparable stability in all 3 motion planes.

Conclusions

This study showed no significant difference in the stability of the 3 instrumented constructs tested when the rib cage is intact. Fractures that might appear more grossly unstable when tested in the disarticulated spine may be bolstered by the ribs. This may affect the extent of segmental spinal instrumentation needed to restore stability in some spine injuries. While these initial findings suggest that shorter constructs may adequately stabilize the spine in this fracture model, further study is needed before these results can be extrapolated to clinical application.

Restricted access

Prasath Mageswaran, Fernando Techy, Robb W. Colbrunn, Tara F. Bonner and Robert F. McLain

Object

The object of this study was to evaluate the effect of hybrid dynamic stabilization on adjacent levels of the lumbar spine.

Methods

Seven human spine specimens from T-12 to the sacrum were used. The following conditions were implemented: 1) intact spine; 2) fusion of L4–5 with bilateral pedicle screws and titanium rods; and 3) supplementation of the L4–5 fusion with pedicle screw dynamic stabilization constructs at L3–4, with the purpose of protecting the L3–4 level from excessive range of motion (ROM) and to create a smoother motion transition to the rest of the lumbar spine. An industrial robot was used to apply continuous pure moment (± 2 Nm) in flexion-extension with and without a follower load, lateral bending, and axial rotation. Intersegmental rotations of the fused, dynamically stabilized, and adjacent levels were measured and compared.

Results

In flexion-extension only, the rigid instrumentation at L4–5 caused a 78% decrease in the segment's ROM when compared with the intact specimen. To compensate, it caused an increase in motion at adjacent levels L1–2 (45.6%) and L2–3 (23.2%) only. The placement of the dynamic construct at L3–4 decreased the operated level's ROM by 80.4% (similar stability as the fusion at L4–5), when compared with the intact specimen, and caused a significant increase in motion at all tested adjacent levels. In flexion-extension with a follower load, instrumentation at L4–5 affected only a subadjacent level, L5–sacrum (52.0%), while causing a reduction in motion at the operated level (L4–5, −76.4%). The dynamic construct caused a significant increase in motion at the adjacent levels T12–L1 (44.9%), L1–2 (57.3%), and L5–sacrum (83.9%), while motion at the operated level (L3–4) was reduced by 76.7%. In lateral bending, instrumentation at L4–5 increased motion at only T12–L1 (22.8%). The dynamic construct at L3–4 caused an increase in motion at T12–L1 (69.9%), L1–2 (59.4%), L2–3 (44.7%), and L5–sacrum (43.7%). In axial rotation, only the placement of the dynamic construct at L3–4 caused a significant increase in motion of the adjacent levels L2–3 (25.1%) and L5–sacrum (31.4%).

Conclusions

The dynamic stabilization system displayed stability characteristics similar to a solid, all-metal construct. Its addition of the supraadjacent level (L3–4) to the fusion (L4–5) did protect the adjacent level from excessive motion. However, it essentially transformed a 1-level lumbar fusion into a 2-level lumbar fusion, with exponential transfer of motion to the fewer remaining discs.