Browse

You are looking at 1 - 4 of 4 items for

  • By Author: Bell, Randy x
Clear All
Free access

Stacy A. Shackelford, Deborah J. del Junco, Michael C. Reade, Randy Bell, Tyson Becker, Jennifer Gurney, Randall McCafferty and Donald W. Marion

OBJECTIVE

In combat and austere environments, evacuation to a location with neurosurgery capability is challenging. A planning target in terms of time to neurosurgery is paramount to inform prepositioning of neurosurgical and transport resources to support a population at risk. This study sought to examine the association of wait time to craniectomy with mortality in patients with severe combat-related brain injury who received decompressive craniectomy.

METHODS

Patients with combat-related brain injury sustained between 2005 and 2015 who underwent craniectomy at deployed surgical facilities were identified from the Department of Defense Trauma Registry and Joint Trauma System Role 2 Registry. Eligible patients survived transport to a hospital capable of diagnosing the need for craniectomy and performing surgery. Statistical analyses included unadjusted comparisons of postoperative mortality by elapsed time from injury to start of craniectomy, and Cox proportional hazards modeling adjusting for potential confounders. Time from injury to craniectomy was divided into quintiles, and explored in Cox models as a binary variable comparing early versus delayed craniectomy with cutoffs determined by the maximum value of each quintile (quintile 1 vs 2–5, quintiles 1–2 vs 3–5, etc.). Covariates included location of the facility at which the craniectomy was performed (limited-resource role 2 facility vs neurosurgically capable role 3 facility), use of head CT scan, US military status, age, head Abbreviated Injury Scale score, Injury Severity Score, and injury year. To reduce immortal time bias, time from injury to hospital arrival was included as a covariate, entry into the survival analysis cohort was defined as hospital arrival time, and early versus delayed craniectomy was modeled as a time-dependent covariate. Follow-up for survival ended at death, hospital discharge, or hospital day 16, whichever occurred first.

RESULTS

Of 486 patients identified as having undergone craniectomy, 213 (44%) had complete date/time values. Unadjusted postoperative mortality was 23% for quintile 1 (n = 43, time from injury to start of craniectomy 30–152 minutes); 7% for quintile 2 (n = 42, 154–210 minutes); 7% for quintile 3 (n = 43, 212–320 minutes); 19% for quintile 4 (n = 42, 325–639 minutes); and 14% for quintile 5 (n = 43, 665–3885 minutes). In Cox models adjusted for potential confounders and immortal time bias, postoperative mortality was significantly lower when time to craniectomy was within 5.33 hours of injury (quintiles 1–3) relative to longer delays (quintiles 4–5), with an adjusted hazard ratio of 0.28, 95% CI 0.10–0.76 (p = 0.012).

CONCLUSIONS

Postoperative mortality was significantly lower when craniectomy was initiated within 5.33 hours of injury. Further research to optimize craniectomy timing and mitigate delays is needed. Functional outcomes should also be evaluated.

Free access

Richard Menger, Benjamin F. Mundell, J. Will Robbins, Peter Letarte, Randy Bell and in conjunction with Council of State Neurosurgical Societies and AANS/CNS Joint Committee of Military Neurosurgeons

OBJECTIVE

Papers from 2002 to 2017 have highlighted consistent unique socioeconomic challenges and opportunities facing military neurosurgeons. Here, the authors focus on the reserve military neurosurgeon who carries the dual mission of both civilian and military responsibilities.

METHODS

Survey solicitation of current active duty and reserve military neurosurgeons was performed in conjunction with the AANS/CNS Joint Committee of Military Neurosurgeons and the Council of State Neurosurgical Societies. Demographic, qualitative, and quantitative data points were compared between reserve and active duty military neurosurgeons. Civilian neurosurgical provider data were taken from the 2016 NERVES (Neurosurgery Executives Resource Value and Education Society) Socio-Economic Survey. Economic modeling was done to forecast the impact of deployment or mobilization on the reserve neurosurgeon, neurosurgery practice, and the community.

RESULTS

Seventy-five percent (12/16) of current reserve neurosurgeons reported that they are satisfied with their military service. Reserve neurosurgeons make significant contributions to the military’s neurosurgical capabilities, with 75% (12/16) having been deployed during their career. No statistically significant demographic differences were found between those serving on active duty and those in the reserve service. However, those who served in the reserves were more likely to desire opportunities for improvement in the military workflow requirements compared with their active duty counterparts (p = 0.04); 92.9% (13/14) of current reserve neurosurgeons desired more flexible military drill programs specific to the needs of practicing physicians. The risk of reserve deployment is also borne by the practices, hospitals, and communities in which the neurosurgeon serves in civilian practice. This can result in fewer new patient encounters, decreased collections, decreased work relative value unit generation, increased operating costs per neurosurgeon, and intangible limitations on practice development. However, through modeling, the authors have illustrated that reserve physicians joining a larger group practice can significantly mitigate this risk. What remains astonishing is that 91.7% of those reserve neurosurgeons who were deployed noted the experience to be rewarding despite seeing a 20% reduction in income, on average, during the fiscal year of a 6-month deployment.

CONCLUSIONS

Reserve neurosurgeons are satisfied with their military service while making substantial contributions to the military’s neurosurgical capabilities, with the overwhelming majority of current military reservists having been deployed or mobilized during their reserve commitments. Through the authors’ modeling, the impact of deployment on the military neurosurgeon, neurosurgeon’s practice, and the local community can be significantly mitigated by a larger practice environment.