Search Results

You are looking at 1 - 2 of 2 items for :

  • By Author: Baumgartner, Christoph x
Clear All
Full access

Christian Dorfer, Georgi Minchev, Thomas Czech, Harald Stefanits, Martha Feucht, Ekaterina Pataraia, Christoph Baumgartner, Gernot Kronreif and Stefan Wolfsberger

OBJECTIVE

The authors' group recently published a novel technique for a navigation-guided frameless stereotactic approach for the placement of depth electrodes in epilepsy patients. To improve the accuracy of the trajectory and enhance the procedural workflow, the authors implemented the iSys1 miniature robotic device in the present study into this routine.

METHODS

As a first step, a preclinical phantom study was performed using a human skull model, and the accuracy and timing between 5 electrodes implanted with the manual technique and 5 with the aid of the robot were compared. After this phantom study showed an increased accuracy with robot-assisted electrode placement and confirmed the robot's ability to maintain stability despite the rotational forces and the leverage effect from drilling and screwing, patients were enrolled and analyzed for robot-assisted depth electrode placement at the authors' institution from January 2014 to December 2015. All procedures were performed with the S7 Surgical Navigation System with Synergy Cranial software and the iSys1 miniature robotic device.

RESULTS

Ninety-three electrodes were implanted in 16 patients (median age 33 years, range 3–55 years; 9 females, 7 males). The authors saw a significant increase in accuracy compared with their manual technique, with a median deviation from the planned entry and target points of 1.3 mm (range 0.1–3.4 mm) and 1.5 mm (range 0.3–6.7 mm), respectively. For the last 5 patients (31 electrodes) of this series the authors modified their technique in placing a guide for implantation of depth electrodes (GIDE) on the bone and saw a significant further increase in the accuracy at the entry point to 1.18 ± 0.5 mm (mean ± SD) compared with 1.54 ± 0.8 mm for the first 11 patients (p = 0.021). The median length of the trajectories was 45.4 mm (range 19–102.6 mm). The mean duration of depth electrode placement from the start of trajectory alignment to fixation of the electrode was 15.7 minutes (range 8.5–26.6 minutes), which was significantly faster than with the manual technique. In 12 patients, depth electrode placement was combined with subdural electrode placement. The procedure was well tolerated in all patients. The authors did not encounter any case of hemorrhage or neurological deficit related to the electrode placement. In 1 patient with a psoriasis vulgaris, a superficial wound infection was encountered. Adequate physiological recordings were obtained from all electrodes. No additional electrodes had to be implanted because of misplacement.

CONCLUSIONS

The iSys1 robotic device is a versatile and easy to use tool for frameless implantation of depth electrodes for the treatment of epilepsy. It increased the accuracy of the authors' manual technique by 60% at the entry point and over 30% at the target. It further enhanced and expedited the authors' procedural workflow.

Restricted access

Christian Dorfer, Thomas Czech, Susanne Aull-Watschinger, Christoph Baumgartner, Rebekka Jung, Gregor Kasprian, Klaus Novak, Susanne Pirker, Birgit Seidl, Harald Stefanits, Karin Trimmel and Ekaterina Pataraia

subgroup of patients with MTLE has been very well characterized based on stereo-EEG (SEEG) investigations, 1 with mostly the mediobasal parts of the pole showing early involvement and considered to be part of the epileptogenic zone. Subpially resecting the temporal pole medial to the dorsal temporopolar gyrus and down and laterally to the prolongation of the collateral sulcus would include the whole of the entorhinal and perirhinal transitional cortex in the resection. 11 , 46 This region has been resected in the original descriptions of the transsylvian SAHE by a