Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Christopher Michael x
  • By Author: Ames, Christopher x
Clear All Modify Search
Free access

Ian McCarthy, Michael O'Brien, Christopher Ames, Chessie Robinson, Thomas Errico, David W. Polly Jr. and Richard Hostin


Incremental cost-effectiveness analysis is critical to the efficient allocation of health care resources; however, the incremental cost-effectiveness ratio (ICER) of surgical versus nonsurgical treatment for adult spinal deformity (ASD) has eluded the literature, due in part to inherent empirical difficulties when comparing surgical and nonsurgical patients. Using observed preoperative health-related quality of life (HRQOL) for patients who later underwent surgery, this study builds a statistical model to predict hypothetical quality-adjusted life years (QALYs) without surgical treatment. The analysis compares predicted QALYs to observed postoperative QALYs and forms the resulting ICER.


This was a single-center (Baylor Scoliosis Center) retrospective analysis of consecutive patients undergoing primary surgery for ASD. Total costs (expressed in 2010 dollars) incurred by the hospital for each episode of surgical care were collected from administrative data and QALYs were calculated from the 6-dimensional Short-Form Health Survey, each discounted at 3.5% per year. Regression analysis was used to predict hypothetical QALYs without surgery based on preoperative longitudinal data for 124 crossover surgical patients with similar diagnoses, baseline HRQOL, age, and sex compared with the surgical cohort. Results were projected through 10-year follow-up, and the cost-effectiveness acceptability curve (CEAC) was estimated using nonparametric bootstrap methods.


Three-year follow-up was available for 120 (66%) of 181 eligible patients, who were predominantly female (89%) with average age of 50. With discounting, total costs averaged $125,407, including readmissions, with average QALYs of 1.93 at 3-year follow-up. Average QALYs without surgery were predicted to be 1.6 after 3 years. At 3- and 5-year follow-up, the ICER was $375,000 and $198,000, respectively. Projecting through 10-year follow-up, the ICER was $80,000. The 10-year CEAC revealed a 40% probability that the ICER was $80,000 or less, a 90% probability that the ICER was $90,000 or less, and a 100% probability that the ICER was less than $100,000.


Based on the WHO's suggested upper threshold for cost-effectiveness (3 times per capita GDP, or $140,000 in 2010 dollars), the analysis reveals that surgical treatment for ASD is cost-effective after a 10-year period based on predicted deterioration in HRQOL without surgery. The ICER well exceeds the WHO threshold at earlier follow-up intervals, highlighting the importance of the durability of surgical treatment in assessing the value of surgical intervention. Due to the study's methodology, the results are dependent on the predicted deterioration in HRQOL without surgery. As such, the results may not extend to patients whose HRQOL would remain steady without surgery. Future research should therefore pursue a direct comparison of QALYs for surgical and nonsurgical patients to better understand the cost-effectiveness of surgery for the average ASD patient.

Full access

Dominic Maggio, Tamir T. Ailon, Justin S. Smith, Christopher I. Shaffrey, Virginie Lafage, Frank Schwab, Regis W. Haid Jr., Themistocles Protopsaltis, Eric Klineberg, Justin K. Scheer, Shay Bess, Paul M. Arnold, Jens Chapman, Michael G. Fehlings, Christopher Ames, AOSpine North America and International Spine Study Group


The associations among global spinal alignment, patient-reported disability, and surgical outcomes have increasingly gained attention. The assessment of global spinal alignment requires standing long-cassette anteroposterior and lateral radiographs; however, spine surgeons routinely rely only on short-segment imaging when evaluating seemingly isolated lumbar pathology. This may prohibit adequate surgical planning and may predispose surgeons to not recognize associated pathology in the thoracic spine and sagittal spinopelvic malalignment. The authors used a case-based survey questionnaire to evaluate if including long-cassette radiographs led to changes to respondents' operative plans as compared with their chosen plan when cases contained standard imaging of the involved lumbar spine only.


A case-based survey was distributed to AOSpine International members that consisted of 15 cases of lumbar spine pathology and lumbar imaging only. The same 15 cases were then shuffled and presented a second time with additional long-cassette radiographs. Each case required participants to select a single operative plan with 5 choices ranging from least to most extensive. The cases included 5 “control” cases with normal global spinal alignment and 10 “test” cases with significant sagittal and/or coronal malalignment. Mean scores were determined for each question with higher scores representing more invasive and/or extensive operative plans.


Of 712 spine surgeons who started the survey, 316 (44%) completed the entire series, including 68% of surgeons with spine fellowship training and representation from more than 40 countries. For test cases, but not for control cases, there were significantly higher average surgical invasiveness scores for cases presented with long-cassette radiographs (4.2) as compared with those cases with lumbar imaging only (3.4; p = 0.002). The addition of long-cassette radiographs resulted in 82.1% of respondents recommending instrumentation up to the thoracic spine, a 23.2% increase as compared with the same cases presented with lumbar imaging only (p = 0.008).


This study demonstrates the importance of maintaining a low threshold for performing standing long-cassette imaging when assessing seemingly isolated lumbar pathology. Such imaging is necessary for the assessment of spinopelvic and global spinal alignment, which can be important in operative planning. Deformity, particularly positive sagittal malalignment, may go undetected unless one maintains a high index of suspicion and obtains long-cassette radiographs. It is recommended that spine surgeons recognize the prevalence and importance of such deformity when contemplating operative intervention.

Restricted access

Ferran Pellisé, Miquel Serra-Burriel, Justin S. Smith, Sleiman Haddad, Michael P. Kelly, Alba Vila-Casademunt, Francisco Javier Sánchez Pérez-Grueso, Shay Bess, Jeffrey L. Gum, Douglas C. Burton, Emre Acaroğlu, Frank Kleinstück, Virginie Lafage, Ibrahim Obeid, Frank Schwab, Christopher I. Shaffrey, Ahmet Alanay, Christopher Ames, the International Spine Study Group and the European Spine Study Group


Adult spinal deformity (ASD) surgery has a high rate of major complications (MCs). Public information about adverse outcomes is currently limited to registry average estimates. The object of this study was to assess the incidence of adverse events after ASD surgery, and to develop and validate a prognostic tool for the time-to-event risk of MC, hospital readmission (RA), and unplanned reoperation (RO).


Two models per outcome, created with a random survival forest algorithm, were trained in an 80% random split and tested in the remaining 20%. Two independent prospective multicenter ASD databases, originating from the European continent and the United States, were queried, merged, and analyzed. ASD patients surgically treated by 57 surgeons at 23 sites in 5 countries in the period from 2008 to 2016 were included in the analysis.


The final sample consisted of 1612 ASD patients: mean (standard deviation) age 56.7 (17.4) years, 76.6% women, 10.4 (4.3) fused vertebral levels, 55.1% of patients with pelvic fixation, 2047.9 observation-years. Kaplan-Meier estimates showed that 12.1% of patients had at least one MC at 10 days after surgery; 21.5%, at 90 days; and 36%, at 2 years. Discrimination, measured as the concordance statistic, was up to 71.7% (95% CI 68%–75%) in the development sample for the postoperative complications model. Surgical invasiveness, age, magnitude of deformity, and frailty were the strongest predictors of MCs. Individual cumulative risk estimates at 2 years ranged from 3.9% to 74.1% for MCs, from 3.17% to 44.2% for RAs, and from 2.67% to 51.9% for ROs.


The creation of accurate prognostic models for the occurrence and timing of MCs, RAs, and ROs following ASD surgery is possible. The presented variability in patient risk profiles alongside the discrimination and calibration of the models highlights the potential benefits of obtaining time-to-event risk estimates for patients and clinicians.