Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Ajay Niranjan x
  • Neurosurgical Focus x
  • Refine by Access: all x
Clear All Modify Search
Free access

Andrés Monserrate, Benjamin Zussman, Alp Ozpinar, Ajay Niranjan, John C. Flickinger, and Peter C. Gerszten


Cone-beam CT (CBCT) image guidance technology has been widely adopted for spine radiosurgery delivery. There is relatively little experience with spine radiosurgery for intradural tumors using CBCT image guidance. This study prospectively evaluated a series of intradural spine tumors treated with radiosurgery. Patient setup accuracy for spine radiosurgery delivery using CBCT image guidance for intradural spine tumors was determined.


Eighty-two patients with intradural tumors were treated and prospectively evaluated. The positioning deviations of the spine radiosurgery treatments in patients were recorded. Radiosurgery was delivered using a linear accelerator with a beam modulator and CBCT image guidance combined with a robotic couch that allows positioning correction in 3 translational and 3 rotational directions. To measure patient movement, 3 quality assurance CBCTs were performed and recorded in 30 patients: before, halfway, and after the radiosurgery treatment. The positioning data and fused images of planning CT and CBCT from the treatments were analyzed to determine intrafraction patient movements. From each of 3 CBCTs, 3 translational and 3 rotational coordinates were obtained.


The radiosurgery procedure was successfully completed for all patients. Lesion locations included cervical (22), thoracic (17), lumbar (38), and sacral (5). Tumor histologies included schwannoma (27), neurofibromas (18), meningioma (16), hemangioblastoma (8), and ependymoma (5). The mean prescription dose was 17 Gy (range 12–27 Gy) delivered in 1–3 fractions. At the halfway point of the radiation, the translational variations and standard deviations were 0.4 ± 0.5, 0.5 ± 0.8, and 0.4 ± 0.5 mm in the lateral (x), longitudinal (y), and anteroposterior (z) directions, respectively. Similarly, the variations immediately after treatment were 0.5 ± 0.4, 0.5 ± 0.6, and 0.6 ± 0.5 mm along x, y, and z directions, respectively. The mean rotational angles were 0.3° ± 0.4°, 0.3° ± 0.4°, and 0.3° ± 0.4° along yaw, roll, and pitch, respectively, at the halfway point and 0.5° ± 0.5°, 0.4° ± 0.5°, and 0.2° ± 0.3° immediately after treatment.


Radiosurgery offers an alternative treatment option for intradural spine tumors in patients who may not be optimal candidates for open surgery. CBCT image guidance for patient setup for spine radiosurgery is accurate and successful in patients with intradural tumors.

Free access

Oren Berkowitz, Douglas Kondziolka, David Bissonette, Ajay Niranjan, Hideyuki Kano, and L. Dade Lunsford


The first North American 201 cobalt-60 source Gamma Knife surgery (GKS) device was introduced at the University of Pittsburgh Medical Center in 1987. The introduction of this innovative and largely untested surgical procedure prompted the desire to study patient outcomes and evaluate the effectiveness of this technique. The parallel advances in computer software and database technology led to the development of a registry to track patient outcomes at this center. The purpose of this study was to describe the registry's evolution and to evaluate its usefulness.


A team was created to develop a software database and tracking system to organize and retain information on the usage of GKS. All patients undergoing GKS were systematically entered into this database by a clinician familiar with the technology and the clinical indications. Information included patient demographics and diagnosis as well as the anatomical site of the target and details of the procedure.


There are currently 11,738 patients in the database, which began to be used in August 1987. The University of Pittsburgh Medical Center has pioneered the evaluation and publication of the GKS technique and outcomes. Data derived from this computer database have facilitated the publication of more than 400 peer-reviewed manuscripts, more than 200 book chapters, 8 books, and more than 300 published abstracts and scientific presentations. The use of GKS has become a well-established surgical technique that has been performed more than 700,000 times around the world.


The development of a patient registry to track and analyze the use of GKS has given investigators the ability to study patient procedures and outcomes. The future of clinical medical research will rely on the ability of clinical centers to store and to share information.

Full access

Edward A. Monaco III, Aftab A. Khan, Ajay Niranjan, Hideyuki Kano, Ramesh Grandhi, Douglas Kondziolka, John C. Flickinger, and L. Dade Lunsford


The authors performed a retrospective review of prospectively collected data to evaluate the safety and efficacy of stereotactic radiosurgery (SRS) for the treatment of patients harboring symptomatic solitary cavernous malformations (CMs) of the brainstem that bleed repeatedly and are high risk for resection.


Between 1988 and 2005, 68 patients (34 males and 34 females) with solitary, symptomatic CMs of the brainstem underwent Gamma Knife surgery. The mean patient age was 41.2 years, and all patients had suffered at least 2 symptomatic hemorrhages (range 2–12 events) before radiosurgery. Prior to SRS, 15 patients (22.1%) had undergone attempted resection. The mean volume of the malformation treated was 1.19 ml, and the mean prescribed marginal radiation dose was 16 Gy.


The mean follow-up period was 5.2 years (range 0.6–12.4 years). The pre-SRS annual hemorrhage rate was 32.38%, or 125 hemorrhages, excluding the first hemorrhage, over a total of 386 patient-years. Following SRS, 11 hemorrhages were observed within the first 2 years of follow-up (8.22% annual hemorrhage rate) and 3 hemorrhages were observed in the period after the first 2 years of follow-up (1.37% annual hemorrhage rate). A significant reduction (p < 0.0001) in the risk of brainstem CM hemorrhages was observed following radiosurgical treatment, as well as in latency period of 2 years after SRS (p < 0.0447). Eight patients (11.8%) experienced new neurological deficits as a result of adverse radiation effects following SRS.


The results of this study support a role for the use of SRS for symptomatic CMs of the brainstem, as it is relatively safe and appears to reduce rebleeding rates in this high-surgical-risk location.