Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Masahiro Kameda x
  • All content x
  • By Author: Yasuhara, Takao x
Clear All Modify Search
Restricted access

Kenichiro Muraoka, Tetsuro Shingo, Takao Yasuhara, Masahiro Kameda, Wen Ji Yuen, Takashi Uozumi, Toshihiro Matsui, Yasuyuki Miyoshi, and Isao Date

Object

The therapeutic effects of adult and embryonic neural precursor cells (NPCs) were evaluated and their therapeutic potential compared in a rat model of Parkinson disease.

Methods

Adult NPCs were obtained from the subventricular zone and embryonic NPCs were taken from the ganglionic eminence of 14-day-old embryos. Each NPC type was cultured with epidermal growth factor. The in vitro neuronal differentiation rate of adult NPCs was approximately equivalent to that of embryonic NPCs after two passages. Next, the NPCs were transfected with either green fluorescent protein or glial cell line–derived neurotrophic factor (GDNF) by adenoviral infection and transplanted into the striata in a rat model of Parkinson disease (PD) induced by unilateral intrastriatal injection of 6-hydroxydopamine. An amphetamine-induced rotation test was used to evaluate rat behavioral improvement, and immunohistochemical analysis was performed to compare grafted cell survival, differentiation, and host tissue changes.

Results

The rats with GDNF-transfected NPCs had significantly fewer amphetamine-induced rotations and less histological damage. Except for the proportion of surviving grafted cells, there were no significant differences between adult and embryonic NPCs.

Conclusions

Adult and embryonic NPCs have a comparable therapeutic potential in a rat model of PD.

Restricted access

Takao Yasuhara, Tetsuro Shingo, Kenichiro Muraoka, Kazuki Kobayashi, Akira Takeuchi, Akimasa Yano, Yuan WenJi, Masahiro Kameda, Toshihiro Matsui, Yasuyuki Miyoshi, and Isao Date

Object. Glial cell line—derived neurotrophic factor (GDNF) has been shown to confer neuroprotective effects on dopaminergic neurons. The authors investigated the effects of GDNF on 6-hydroxydopamine (6-OHDA)—treated dopaminergic neurons in vitro and in vivo.

Methods. First, the authors examined how 1, 10, or 100 ng/ml of GDNF, administered to cells 24 hours before, simultaneously with, or 2 or 4 hours after 6-OHDA was added, affected dopaminergic neurons. In a primary culture of E14 murine ventral mesencephalic neurons, earlier treatment with the higher dosage of GDNF suppressed 6-OHDA—induced loss of dopaminergic neurons better than later treatment. Next, the authors examined whether continuous infusion of GDNF at earlier time points would demonstrate a greater neuroprotective effect in a rat model of Parkinson disease (PD). They established a human GDNF-secreting cell line, called BHK-GDNF, and encapsulated the cells into hollow fibers. The encapsulated cells were unilaterally implanted into the striatum of adult rats 1 week before; simultaneously with; or 1, 2, or 4 weeks after 6-OHDA was given to induce lesions of the same striatum. With the earlier transplantation of a BHK-GDNF capsule, there was a significant reduction in the number of amphetamine-induced rotations displayed by the animals. Rats that had received earlier implantation of BHK-GDNF capsules displayed more tyrosine hydroxylase—positive neurons in the substantia nigra pars compacta and a tendency for glial proliferation in the striatum.

Conclusions. These neuroprotective effects may be related to glial proliferation and signaling via the GDNF receptor α1. The results of this study support a role for this grafting technique in the treatment of PD.