Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Khaled M. Kebaish x
  • All content x
  • By Author: Protopsaltis, Themistocles x
Clear All Modify Search
Restricted access

Paraspinal muscle size as an independent risk factor for proximal junctional kyphosis in patients undergoing thoracolumbar fusion

Presented at the 2019 AANS/CNS Joint Section on Disorders of the Spine and Peripheral Nerves

Zach Pennington, Ethan Cottrill, A. Karim Ahmed, Peter Passias, Themistocles Protopsaltis, Brian Neuman, Khaled M. Kebaish, Jeff Ehresman, Erick M. Westbroek, Matthew L. Goodwin, and Daniel M. Sciubba


Proximal junctional kyphosis (PJK) is a structural complication of spinal fusion in 5%–61% of patients treated for adult spinal deformity. In nearly one-third of these cases, PJK is progressive and requires costly surgical revision. Previous studies have suggested that patient body habitus may predict risk for PJK. Here, the authors sought to investigate abdominal girth and paraspinal muscle size as risk factors for PJK.


All patients undergoing thoracolumbosacral fusion greater than 2 levels at a single institution over a 5-year period with ≥ 6 months of radiographic follow-up were considered for inclusion. PJK was defined as kyphosis ≥ 20° between the upper instrumented vertebra (UIV) and two supra-adjacent vertebrae. Operative and radiographic parameters were recorded, including pre- and postoperative sagittal vertical axis (SVA), sacral slope (SS), lumbar lordosis (LL), pelvic tilt, pelvic incidence (PI), and absolute value of the pelvic incidence–lumbar lordosis mismatch (|PI-LL|), as well as changes in LL, |PI-LL|, and SVA. The authors also considered relative abdominal girth and the size of the paraspinal muscles at the UIV.


One hundred sixty-nine patients met inclusion criteria. On univariate analysis, PJK was associated with a larger preoperative SVA (p < 0.001) and |PI-LL| (p = 0.01), and smaller SS (p = 0.004) and LL (p = 0.001). PJK was also associated with more positive postoperative SVA (p = 0.01), ΔSVA (p = 0.01), Δ|PI-LL| (p < 0.001), and ΔLL (p < 0.001); longer construct length (p = 0.005); larger abdominal girth–to-muscle ratio (p = 0.007); and smaller paraspinal muscles at the UIV (p < 0.001). Higher postoperative SVA (OR 1.1 per cm), smaller paraspinal muscles at the UIV (OR 2.11), and more aggressive reduction in |PI-LL| (OR 1.03) were independent predictors of radiographic PJK on multivariate logistic regression.


A more positive postoperative global sagittal alignment and smaller paraspinal musculature at the UIV most strongly predicted PJK following thoracolumbosacral fusion.

Restricted access

Justin S. Smith, Manish Singh, Eric Klineberg, Christopher I. Shaffrey, Virginie Lafage, Frank J. Schwab, Themistocles Protopsaltis, David Ibrahimi, Justin K. Scheer, Gregory Mundis Jr., Munish C. Gupta, Richard Hostin, Vedat Deviren, Khaled Kebaish, Robert Hart, Douglas C. Burton, Shay Bess, and Christopher P. Ames


Increased sagittal vertical axis (SVA) correlates strongly with pain and disability for adults with spinal deformity. A subset of patients with sagittal spinopelvic malalignment (SSM) have flatback deformity (pelvic incidence–lumbar lordosis [PI-LL] mismatch > 10°) but remain sagittally compensated with normal SVA. Few data exist for SSM patients with flatback deformity and normal SVA. The authors' objective was to compare baseline disability and treatment outcomes for patients with compensated (SVA < 5 cm and PI-LL mismatch > 10°) and decompensated (SVA > 5 cm) SSM.


The study was a multicenter, prospective analysis of adults with spinal deformity who consecutively underwent surgical treatment for SSM. Inclusion criteria included age older than 18 years, presence of adult spinal deformity with SSM, plan for surgical treatment, and minimum 1-year follow-up data. Patients with SSM were divided into 2 groups: those with compensated SSM (SVA < 5 cm and PI-LL mismatch > 10°) and those with decompensated SSM (SVA ≥ 5 cm). Baseline and 1-year follow-up radiographic and health-related quality of life (HRQOL) outcomes included Oswestry Disability Index, Short Form–36 scores, and Scoliosis Research Society–22 scores. Percentages of patients achieving minimal clinically important difference (MCID) were also assessed.


A total of 125 patients (27 compensated and 98 decompensated) met inclusion criteria. Compared with patients in the compensated group, patients in the decompensated group were older (62.9 vs 55.1 years; p = 0.004) and had less scoliosis (43° vs 54°; p = 0.002), greater SVA (12.0 cm vs 1.7 cm; p < 0.001), greater PI-LL mismatch (26° vs 20°; p = 0.013), and poorer HRQOL scores (Oswestry Disability Index, Short Form-36 physical component score, Scoliosis Research Society-22 total; p ≤ 0.016). Although these baseline HRQOL differences between the groups reached statistical significance, only the mean difference in Short Form–36 physical component score reached threshold for MCID. Compared with baseline assessment, at 1 year after surgery improvement was noted for patients in both groups for mean SVA (compensated –1.1 cm, decompensated +4.8 cm; p ≤ 0.009), mean PI-LL mismatch (compensated 6°, decompensated 5°; p < 0.001), and all HRQOL measures assessed (p ≤ 0.005). No significant differences were found between the compensated and decompensated groups in the magnitude of HRQOL score improvement or in the percentages of patients achieving MCID for each of the outcome measures assessed.


Decompensated SSM patients with elevated SVA experience significant disability; however, the amount of disability in compensated SSM patients with flatback deformity caused by PI-LL mismatch but normal SVA is underappreciated. Surgical correction of SSM demonstrated similar radiographic and HRQOL score improvements for patients in both groups. Evaluation of SSM should extend beyond measuring SVA. Among patients with concordant pain and disability, PI-LL mismatch must be evaluated for SSM patients and can be considered a primary indication for surgery.

Restricted access

Justin S. Smith, Ellen Shaffrey, Eric Klineberg, Christopher I. Shaffrey, Virginie Lafage, Frank J. Schwab, Themistocles Protopsaltis, Justin K. Scheer, Gregory M. Mundis Jr., Kai-Ming G. Fu, Munish C. Gupta, Richard Hostin, Vedat Deviren, Khaled Kebaish, Robert Hart, Douglas C. Burton, Breton Line, Shay Bess, Christopher P. Ames, and The International Spine Study Group


Improved understanding of rod fracture (RF) following adult spinal deformity (ASD) surgery could prove valuable for surgical planning, patient counseling, and implant design. The objective of this study was to prospectively assess the rates of and risk factors for RF following surgery for ASD.


This was a prospective, multicenter, consecutive series. Inclusion criteria were ASD, age > 18 years, ≥5 levels posterior instrumented fusion, baseline full-length standing spine radiographs, and either development of RF or full-length standing spine radiographs obtained at least 1 year after surgery that demonstrated lack of RF. ASD was defined as presence of at least one of the following: coronal Cobb angle ≥20°, sagittal vertical axis (SVA) ≥5 cm, pelvic tilt (PT) ≥25°, and thoracic kyphosis ≥60°.


Of 287 patients who otherwise met inclusion criteria, 200 (70%) either demonstrated RF or had radiographic imaging obtained at a minimum of 1 year after surgery showing lack of RF. The patients' mean age was 54.8 ± 15.8 years; 81% were women; 10% were smokers; the mean body mass index (BMI) was 27.1 ± 6.5; the mean number of levels fused was 12.0 ± 3.8; and 50 patients (25%) had a pedicle subtraction osteotomy (PSO). The rod material was cobalt chromium (CC) in 53%, stainless steel (SS), in 26%, or titanium alloy (TA) in 21% of cases; the rod diameters were 5.5 mm (in 68% of cases), 6.0 mm (in 13%), or 6.35 mm (in 19%). RF occurred in 18 cases (9.0%) at a mean of 14.7 months (range 3–27 months); patients without RF had a mean follow-up of 19 months (range 12–24 months). Patients with RF were older (62.3 vs 54.1 years, p = 0.036), had greater BMI (30.6 vs 26.7, p = 0.019), had greater baseline sagittal malalignment (SVA 11.8 vs 5.0 cm, p = 0.001; PT 29.1° vs 21.9°, p = 0.016; and pelvic incidence [PI]–lumbar lordosis [LL] mismatch 29.6° vs 12.0°, p = 0.002), and had greater sagittal alignment correction following surgery (SVA reduction by 9.6 vs 2.8 cm, p < 0.001; and PI-LL mismatch reduction by 26.3° vs 10.9°, p = 0.003). RF occurred in 22.0% of patients with PSO (10 of the 11 fractures occurred adjacent to the PSO level), with rates ranging from 10.0% to 31.6% across centers. CC rods were used in 68% of PSO cases, including all with RF. Smoking, levels fused, and rod diameter did not differ significantly between patients with and without RF (p > 0.05). In cases including a PSO, the rate of RF was significantly higher with CC rods than with TA or SS rods (33% vs 0%, p = 0.010). On multivariate analysis, only PSO was associated with RF (p = 0.001, OR 5.76, 95% CI 2.01–15.8).


Rod fracture occurred in 9.0% of ASD patients and in 22.0% of PSO patients with a minimum of 1-year follow-up. With further follow-up these rates would likely be even higher. There was a substantial range in the rate of RF with PSO across centers, suggesting potential variations in technique that warrant future investigation. Due to higher rates of RF with PSO, alternative instrumentation strategies should be considered for these cases.