Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Fernando Viñuela x
  • Refine by Access: all x
  • By Author: Morino, Taku x
Clear All Modify Search
Restricted access

Satoshi Tateshima, Fernando Viñuela, J. Pablo Villablanca, Yuichi Murayama, Taku Morino, Kiyoe Nomura, and Kazuo Tanishita

Object. The aim of this study was to evaluate axial and secondary flow structures in a wide-necked internal carotid artery—ophthalmic artery aneurysm, one of the most common locations for endovascular coil placement.

Methods. A clear acrylic aneurysm model was manufactured from a three-dimensional computerized tomography angiogram. Intraaneurysm blood flow analysis was conducted using an acrylic aneurysm model together with laser Doppler velocimetry and particle imaging velocimetry. The maximal axial blood flow velocities in the inflow and outflow zones at the aneurysm orifice were noted at the peak systolic phase, measuring 46.8 and 24.9% of that in the parent artery, respectively. The mean size of the inflow zone during one cardiac cycle was 44.3 ± 9.8% (range 35.6–58.7%) the size of the axial section at the aneurysm orifice. In the lower and upper planes of the aneurysm dome, the mean size of inward and outward flow areas were 43.3 ± 6.7% and 43.8 ± 6.8% the size of the axial cross-sectional plane, respectively. The axial flow velocity structures were dynamically altered throughout the cardiac cycle, particularly at the aneurysm orifice. The fastest secondary flow at the opening was also noted at the peak systolic and early diastolic phases. Axial blood flow velocity was slower in the upper axial plane of the aneurysm dome than in the lower one. Conversely, the secondary flow component was faster in the upper plane.

Conclusions. The side-wall aneurysm in this study did not demonstrate a simple flow pattern as was previously seen in ideally shaped experimental aneurysms in vitro and in vivo. The flow patterns of inflow and outflow zones were very difficult to predict based on the limited flow information provided on standard digital subtraction angiography, even in an aneurysm with a relatively simple dome shape.

Restricted access

Satoshi Tateshima, Yuichi Murayama, J. Pablo Villablanca, Taku Morino, Hikoichiro Takahashi, Takatsugu Yamauchi, Kazuo Tanishita, and Fernando Viñuela

Object. To obtain precise flow profiles in patients' aneurysms, the authors developed a new in vitro study method featuring an aneurysm model manufactured using three-dimensional computerized tomography (3D CT) angiography.

Methods. A clear acrylic basilar artery (BA) tip aneurysm model manufactured from a patient's 3D CT angiogram was used to analyze flow modifications during one cardiac cycle. Stereolithography was utilized to create the aneurysm model. Three-dimensional flow profiles within the aneurysm model were obtained from velocity measurements by using laser Doppler velocimetry. The aneurysm inflow/outflow zones changed dynamically in their location, size of their cross-sectional area, and also in their shapes over one cardiac cycle. The flow velocity at the inflow zone was 16.8 to 81.9% of the highest axial velocity in the BA with a pulsatility index (PI) of 1.1. The flow velocity at the outflow zone was 16.8 to 34.3% of the highest axial velocity of the BA, with a PI of 0.68. The shear stress along the walls of the aneurysm was calculated from the fluid velocity measured at a distance of 0.5 mm from the wall. The highest value of shear stress was observed at the bleb of the aneurysm.

Conclusions. This clear acrylic model of a BA tip aneurysm manufactured using a CT angiogram allowed qualitative and quantitative analysis of its flow during a cardiac cycle. Accumulated knowledge from this type of study may reveal pertinent information about aneurysmal flow dynamics that will help practitioners understand the relationship among anatomy, flow dynamics, and the natural history of aneurysms.