Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Hideyuki Kano x
  • All content x
  • By Author: Liu, Xiaomin x
  • By Author: Iyer, Aditya x
  • By Author: Niranjan, Ajay x
Clear All Modify Search
Restricted access

Hideyuki Kano, Douglas Kondziolka, John C. Flickinger, Kyung-Jae Park, Aditya Iyer, Huai-che Yang, Xiaomin Liu, Edward A. Monaco III, Ajay Niranjan, and L. Dade Lunsford


In this paper the authors' goal was to define the long-term benefits and risks of stereotactic radiosurgery (SRS) for patients with arteriovenous malformations (AVMs) who underwent prior embolization.


Between 1987 and 2006, the authors performed Gamma Knife surgery in 996 patients with brain AVMs; 120 patients underwent embolization followed by SRS. In this series, 64 patients (53%) had at least one prior hemorrhage. The median number of embolizations varied from 1 to 5. The median target volume was 6.6 cm3 (range 0.2–26.3 cm3). The median margin dose was 18 Gy (range 13.5–25 Gy).


After embolization, 25 patients (21%) developed symptomatic neurological deficits. The overall rates of total obliteration documented by either angiography or MRI were 35%, 53%, 55%, and 59% at 3, 4, 5, and 10 years, respectively. Factors associated with a higher rate of AVM obliteration were smaller target volume, smaller maximum diameter, higher margin dose, timing of embolization during the most recent 10-year period (1997–2006), and lower Pollock-Flickinger score. Nine patients (8%) had a hemorrhage during the latency period, and 7 patients died of hemorrhage. The actuarial rates of AVM hemorrhage after SRS were 0.8%, 3.5%, 5.4%, 7.7%, and 7.7% at 1, 2, 3, 5, and 10 years, respectively. The overall annual hemorrhage rate was 2.7%. Factors associated with a higher risk of hemorrhage after SRS were a larger target volume and a larger number of prior hemorrhages. Permanent neurological deficits due to adverse radiation effects (AREs) developed in 3 patients (2.5%) after SRS, and 1 patient had delayed cyst formation 210 months after SRS. No patient died of AREs. A larger 12-Gy volume was associated with higher risk of symptomatic AREs. Using a case-control matched approach, the authors found that patients who underwent embolization prior to SRS had a lower rate of total obliteration (p = 0.028) than patients who had not undergone embolization.


In this 20-year experience, the authors found that prior embolization reduced the rate of total obliteration after SRS, and that the risks of hemorrhage during the latency period were not affected by prior embolization. For patients who underwent embolization to volumes smaller than 8 cm3, success was significantly improved. A margin dose of 18 Gy or more also improved success. In the future, the role of embolization after SRS should be explored.

Full access

Kyung-Jae Park, Hideyuki Kano, Aditya Iyer, Xiaomin Liu, Daniel A. Tonetti, Craig Lehocky, Andrew Faramand, Ajay Niranjan, John C. Flickinger, Douglas Kondziolka, and L. Dade Lunsford


The authors of this study evaluate the long-term outcomes of stereotactic radiosurgery (SRS) for cavernous sinus meningioma (CSM).


The authors retrospectively assessed treatment outcomes 5–18 years after SRS in 200 patients with CSM. The median patient age was 57 years (range 22–83 years). In total, 120 (60%) patients underwent Gamma Knife SRS as primary management, 46 (23%) for residual tumors, and 34 (17%) for recurrent tumors after one or more surgical procedures. The median tumor target volume was 7.5 cm3 (range 0.1–37.3 cm3), and the median margin dose was 13.0 Gy (range 10–20 Gy).


Tumor volume regressed in 121 (61%) patients, was unchanged in 49 (25%), and increased over time in 30 (15%) during a median imaging follow-up of 101 months. Actuarial tumor control rates at the 5-, 10-, and 15-year follow-ups were 92%, 84%, and 75%, respectively. Of the 120 patients who had undergone SRS as a primary treatment (primary SRS), tumor progression was observed in 14 (11.7%) patients at a median of 48.9 months (range 4.8–120.0 months) after SRS, and actuarial tumor control rates were 98%, 93%, 85%, and 85% at the 1-, 5-, 10-, and 15-year follow-ups post-SRS. A history of tumor progression after microsurgery was an independent predictor of an unfavorable response to radiosurgery (p = 0.009, HR = 4.161, 95% CI 1.438–12.045). Forty-four (26%) of 170 patients who had presented with at least one cranial nerve (CN) deficit improved after SRS. Development of new CN deficits after initial microsurgical resection was an unfavorable factor for improvement after SRS (p = 0.014, HR = 0.169, 95% CI 0.041–0.702). Fifteen (7.5%) patients experienced permanent CN deficits without evidence of tumor progression at a median onset of 9 months (range 2.3–85 months) after SRS. Patients with larger tumor volumes (≥ 10 cm3) were more likely to develop permanent CN complications (p = 0.046, HR = 3.629, 95% CI 1.026–12.838). Three patients (1.5%) developed delayed pituitary dysfunction after SRS.


This long-term study showed that Gamma Knife radiosurgery provided long-term tumor control for most patients with CSM. Patients who underwent SRS for progressive tumors after prior microsurgery had a greater chance of tumor growth than the patients without prior surgery or those with residual tumor treated after microsurgery.